
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Newly Released Capabilities in Distributed-memory SuperLU Sparse Direct
Solver

XIAOYE S. LI∗, YANG LIU∗, and PAUL LIN∗, Lawrence Berkeley National Laboratory, USA

PIYUSH SAO, Oak Ridge National Laboratory, USA

A crisp summary.

CCS Concepts: •Mathematics of computing→ Solvers.

Additional Key Words and Phrases: Sparse direct solver, communication-avoiding, GPU, mixed-precision

ACM Reference Format:
Xiaoye S. Li, Yang Liu, Paul Lin, and Piyush Sao. 2022. Newly Released Capabilities in Distributed-memory SuperLU Sparse Direct
Solver. In . ACM, New York, NY, USA, 20 pages. https://doi.org/XXXXXXX.XXXXXXX

Contents

Abstract 1
Contents 1
1 Overview of SuperLU and SuperLU_DIST 2
2 3D Communication-Avoiding Routines 3
2.1 The 3D Process layout and its performance impact 4
3 OpenMP Intra-node Parallelism 7
3.1 OpenMP Performance tuning 7
4 GPU-enabled Routines 8
4.1 2D SpLU algorithm and tuning parameters 8
4.2 3D SpLU algorithm and tuning parameters 10
4.3 2D SpTRSV algorithm 10
5 Mixed-precision Routines 10
6 Summary of Parameters, Environment Variables and Performance Influence 13
6.1 3D CPU SpLU 14
6.2 2D GPU SpLU 15
6.3 3D GPU SpLU 15
7 Fortran 90 Interface 15
8 Installation with CMake or Spack 17
8.1 Dependent external libraries 17
8.2 CMake installation 17

∗All the authors contributed equally to this article.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Yang Liu, Paul Lin, and Piyush Sao

8.3 Spack installation 19
9 PETSc Interface with GPU Capability 19
Acknowledgments 19
References 19

1 OVERVIEW OF SUPERLU AND SUPERLU_DIST

SuperLU contains a set of sparse direct solvers for solving large sets of linear equations 𝐴𝑋 = 𝐵 [4]. Here 𝐴 is a square,
nonsingular, 𝑛 ×𝑛 sparse matrix, and 𝑋 and 𝐵 are dense 𝑛 ×𝑛𝑟ℎ𝑠 matrices, where 𝑛𝑟ℎ𝑠 is the number of right-hand sides
and solution vectors. The matrix 𝐴 need not be symmetric or definite; indeed, SuperLU is particularly appropriate for
unsymmetric matrices, and it respects both the unsymmetric values as well as the unsymmetric sparsity pattern. The
routines appear in three different libraries: sequential (SuperLU), multithreaded (SuperLU_MT) and distributed-memory
parallel (SuperLU_DIST). They can be linked together in a single application. All three libraries use variations of
Gaussian elimination (LU factorization) optimized to take advantage both of sparsity and of computer architecture, in
particular memory hierarchy (caches) and parallelism.

The SuperLU_DIST library is implemented in ANSI C, using MPI for communication, OpenMP for multithreading,
and CUDA (or HIP) for NVIDIA (or AMD) GPUs. The library includes routines to handle both real and complex matrices
in single and double precisions. The parallel routine names for the double-precision real version start with letters “pd”
(such as pdgstrf); the parallel routine names for double-precision complex version start with letters “pz” (such as
pzgstrf). The parallel algorithm consists of the following major steps.

(1) Preprocessing
(2) Sparse LU factorization (SpLU)
(3) Sparse triangular solutions (SpTRSV)
(4) Iterative refinement (IR) (optional)

The preprocessing in Step 1 transforms the original linear system 𝐴𝑥 = 𝑏 into 𝐴𝑥 = 𝑏, so that the latter one has
more favorable numerical properties and sparsity stuctures. In SuperLU_DIST, typically 𝐴 is first transformed into
𝐴 = 𝑃𝑐𝑃𝑟𝐷𝑟𝐴𝐷𝑐𝑃

𝑇
𝑐 . Here 𝐷𝑟 and 𝐷𝑐 are diagonal scaling matrices to equilibrate the system, which tends to reduce

condition number and avoid over/underflow. 𝑃𝑟 and 𝑃𝑐 are permutation matrices. The role of 𝑃𝑟 is to permute rows of
the matrix to make diagonal element large relative to the off-diagonal elements (numerical pivoting). The role of 𝑃𝑐 is to
to permute row and columns of the matrix to minimize the fill-in in the 𝐿 and𝑈 factors (sparsity reordering). Note that
we apply 𝑃𝑐 symmetrically so that the large diagonal entries remain on the diagonal. With these transformations, the
linear system to be solved is: (𝑃𝑐𝑃𝑟𝐷𝑟𝐴𝐷𝑐𝑃

𝑇
𝑐) (𝑃𝑐𝐷−1

𝑐)𝑥 = 𝑃𝑐𝑃𝑟𝐷𝑟𝑏. In the software configuration, each transformation
can be turned off, or can be achieved with different algorithms. Further algorithm details and user interfaces can be
found in [4, 6]. After these transformations, the last preprocessing step is symbolic factorization which computes the
distributed nonzero structures of the 𝐿 and𝑈 factors, and distributes the nonzeros of 𝐴 into 𝐿 and𝑈 .

This release paper focuses on the new capabilities in Steps 2-4 in SuperLU_DIST. Throughout the paper, when there
is no ambiguity, we simply refer to the library SuperLU_DIST as SuperLU.

Before the new Version-7 release (2021), the distributed memory code had been largely built upon the design in the
first paper [5]. The main ingredients of the parallel SpLU algorithm are:

2

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

SuperLU_DISTRelease v7 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

• supernodal fan-out (right-looking) based on elimination DAGs,
• static pivoting with possible half-precision perturbations on the diagonal (GESP),
• 2D logical process arrangement for non-uniform block-cyclic mapping, based on supernodal block partition, and
• loosely synchronous scheduling with look-ahead pipelining [10].

The parallel SpTRSV uses the same 2D block-cyclic layout of the 𝐿 and 𝑈 matrices as the results of SpLU. An entirely
message-driven asynchronous scheduling algorithm is designed to mitigate communication dominance [5]. A working
precision iterative refinement can be optionally invoked to improve solution accuracy.

The routines in SuperLU are divided into driver routines and computational routines. The routine names are inspired
by the LAPACK and ScaLAPACK naming convention. For example, the 2D linear solver driver is pdgssvx, where ’p’
means parallel, ’d’ means double precision,1 ’gs’ means general sparse matrix format, and ’svx’ means solving a linear
system. Below is a list of double prercision user-callable routines.

• Driver routines: pdgssvx (driver for the old 2D algorithms), pdgssvx3d (driver for the new 3D algorithms
in Section 2).
• Computational routines: pdgstrf and pdgstrs are respectively triangular factorization SpLU and triangular
solve in 2D process grid. pdgstrf3d is triangular factorization SpLU in 3D process grid. These routines take as
input the linear system that is already preprocessed. This may be cumbersome and error prone for a novice user.
Therefore, we recommend the users to use the driver routines as much as possible.
• Example routines in EXAMPLE/ directory: pddrive and pddrive3d that call the respective drivers pdgssvx and
pdgssvx3d to solve a linear systems. In EXAMPLE/ directory, there are a number of other examples, pddrive1,
pddrrive2, ... etc., which illustrate how to call the drivers to reuse the preprocessing results for a sequennce of
linear systems with similar structures.

The Doxygen generated documentation for all the routines are available at https://portal.nersc.gov/project/sparse/
superlu/superlu_dist_code_html/. The leading comment in the source code of each routine describes in detail the
input/output arguments, and the routine’s functionality.

In the following sections, we will describe in detail the new features available since Version-7 release, including the
3D communication-avoiding algorithm framework, the multi-GPU acceleration, the mixed-precision algorithms, the
new installation mechanisms and the user interfaces.

2 3D COMMUNICATION-AVOIDING ROUTINES

Motivated by the strong scaling requirement from the exascale applications and the communication-avoiding algorithm
development for dense linear algebra in the last decade, we developed a novel 3D algorithm framework for sparse
factorization and triangular solves to mitigate communication cost. We use a three-dimensional MPI process grid,
exploits elimination tree parallelism, and trades off increased memory for reduced per-process communication. The
3D processes grid is configured as 𝑃 = 𝑃𝑥 x 𝑃𝑦 x 𝑃𝑧 (see Fig. 2a). The role of each process in the 3D algorithm is not
identical. From algorithm viewpoint, we should think of 𝑃 processses consisting of 𝑃𝑧 sets of 2D processes layers. The
distribution of the sparse matrices is governed by the supernodal elimination tree-forest (etree-forest): the standard
etree is transformed into a etree-forest which is binary at the top log2 (𝑃𝑧) levels and has 𝑃𝑧 subtree-forests at the leaf
level (see Fig. 1a). The description of the tree partition and mapping algorithm is described in [9, Section 3.3]. The

1We support four datatypes: ’s’ (FP32 real), ’d’ (FP64 double), ’c’ (FP32 complex) and ’z’ (FP64 complex). Throughout the paper, we use the ’d’ version of
the routine names.

3

https://portal.nersc.gov/project/sparse/superlu/superlu_dist_code_html/
https://portal.nersc.gov/project/sparse/superlu/superlu_dist_code_html/

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Yang Liu, Paul Lin, and Piyush Sao

matrices 𝐴, 𝐿 and𝑈 corresponding to each subtree-forest is assigned to one 2D process layer. The 2D layers are referred
to as Grid-0, Grid-1, .., up to (𝑃𝑧 − 1) grids. Fig. 1b shows the submatrix mapping to the four 2D pocess grids.

(a) 2-level etree partition

1 2

3 4 5 6

0 0

1

3

0

1

4

0

2

5

0

2

6

Grid-0 Grid-1 Grid-2 Grid-3

A0

A1 A2

A3 A6

0

0

A4

0

A5

0

0

(b) Matrix view on 4 process grids

Fig. 1. Illustration of the 3D parallel SpLU algorithm with 4 process grids.[do we need to define 𝐴𝑖? – YANG]

The example program EXAMPLE/pddrive3d.c shows how the user can use the 3D algorithm to solve a sparse linear
system. As an initialization step, the user needs to call

superlu_gridinit3d (MPI_COMM_WORLD, nprow, npcol, npdep, &grid);

Here, nprow, npcol and npdep are user input, corresponding to the 𝑃𝑥 , 𝑃𝑦 and 𝑃𝑧 respectively. In this example, a new
process group for SuperLU is built upon the MPI default communicator MPI_COMM_WORLD. In general, it can be built
upon any MPI communicator. All the subsequent parallel routines in SuperLU will carry the grid variable and use this
process group. In this way, the MPI messages within SuperLU do not mix up with the meessages from the other codes.

2.1 The 3D Process layout and its performance impact

In SuperLU, a 3D process grid can be arranged in two formats: 𝑋𝑌 -major or 𝑍 -major, see Fig. 3. In 𝑋𝑌 -major, processes
with the same 𝑋𝑌 -coordinate ([The phrase is confusing, maybe processes within the same 2D grid? – YANG
]) have consecutive global ranks. Consequently, when spawning multiple processes on a node, the spawned processes
will have the same 𝑋𝑌 coordinate (except for cases where 𝑃𝑧 is not a multiple of the number of processes spawned

(a) 3D process grid

Px

Py

Pz

(b) “XY” and “Z” major ordering

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

0 2 4

6 4 5

12 7 8

1 3 5

7 9 11

13 15 17

Z-major Grid XY-major Grid

Fig. 2. A logical 3D process grid and process configuration for RANKORDER={𝑋𝑌,𝑍 }

4

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

SuperLU_DISTRelease v7 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

typedef struct {
MPI_Comm comm; /* MPI communicator */
superlu_scope_t rscp; /* row scope */
superlu_scope_t cscp; /* column scope */
superlu_scope_t zscp; /* scope in third dimension */
gridinfo_t grid2d; /* for using 2D functions */
int iam; /* my process number in this grid */
int nprow; /* number of process rows */
int npcol; /* number of process columns */
int npdep; /* number of replication factor in Z-dimension */
int rankorder; /* = 0: Z-major (default)

* e.g. 1x3x4 grid: layer0 layer1 layer2 layer3
* 0 3 6 9
* 1 4 7 10
* 2 5 8 11
* = 1: XY-major (need set environment variable: RANKORDER=XY)
* e.g. 1x3x4 grid: layer0 layer1 layer2 layer3
* 0 1 2 4
* 5 6 7 8
* 9 10 11 12

*/
} gridinfo3d_t;

Fig. 3. 3D process grid definition. [the ranks in X-Y-major example should be 0-11 – YANG]

on the node). Alternatively, We can arrange the 3D process grid in Z-major format where processes with the same 𝑍
coordinate have consecutive global ranks. This is the default ordering in SuperLU.

The 𝑍 -major format can be better for performance as it keeps processes in a 2D grid closer. Hence it may provide
higher bandwidth for 2D communication, typically the bottleneck in communication. On the other hand, the 𝑋𝑌 -major
format can be helpful with GPU acceleration cases.[Why?? – SHERRY]
Add xy-z-major figure in Fig. 1

Add perforrmance data to show RANKORDER influence.

The driver routine is pdgssvx3d, with the following calling API:

void pdgssvx3d (superlu_dist_options_t *options, SuperMatrix *A,

dScalePermstruct_t *ScalePermstruct,

double B[], int ldb, int nrhs, gridinfo3d_t *grid,

/* following are output */

dLUstruct_t *LUstruct, dSOLVEstruct_t *SOLVEstruct,

double *berr, SuperLUStat_t *stat, int *info);

The first argument is input, making the algorithm choices in the options structure. Section 6 describes all possible
options and how to change each option. Table 2 tabulates the default values. The second argument is the input
matrix 𝐴 stored in the SuperMatrix metadata structure. The third argument is an input/output structure storing
all the transformation vectors obtained from the preprocessing steps. The input right-hand sides are given by the
{B, ldb, nrhs} tuple. The grid structure defines the 3D process grid, including the MPI communicator for this grid.

5

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Yang Liu, Paul Lin, and Piyush Sao

All the precision-independent structures are defined in superlu_defs.h, and the precision-dependent structures are
defined in superlu_ddef.h (for double precision). The sparse LU factors and the triangular solve structures are output.
In addition the berr argument returns an array of componentwise relative backward error of each solution vector.

The sparse LU factorization progresses from leaf level 𝑙 = log2 𝑃𝑧 to the root level 0. The two main phases are local
factorization and Ancestor-Reduction.

(1) Local factorization. In parallel and independently, every 2D process grid performs the 2𝐷 factorization of locally
owned submatrix of 𝐴. This is the same algorithm as the one before Version-7 []. The only difference is that each
process grid will generate a partial Schur complement update, which will be summed up with the partial updates
from the other process grids in the next phase.

(2) Ancestor-Reduction. After the factorization of level-𝑖 , we reduce the partial Schur complement of the ancestor
nodes before factorizing the next level. In the 𝑖-th level’s reduction, the receiver is the 𝑘2𝑙−𝑖+1-th process grid and
the sender is the (2𝑘 + 1)2𝑙−𝑖 -th process grid, for some integer 𝑘 . The process in the 2D grid which owns a block
𝐴𝑖, 𝑗 has the same (𝑥 ,𝑦) coordinate in both sender and receiver grids. So communication in the ancestor-reduction
step is point-to-point pair-wise and takes places along the 𝑧-axis in the 3D process grid.

We analyzed the asymptotic improvements for planar graphs (e.g., those arising from 2D grid or mesh discretizations)
and certain non-planar graphs (specifically for 3D grids and meshes). For a planar graph with 𝑛 vertices, our algorithm
reduces communication volume asymptotically in 𝑛 by a factor of O

(√
log𝑛

)
and latency by a factor of O (log𝑛). For

non-planar cases, our algorithm can reduce the per-process communication volume by 3× and latency by O
(
𝑛

1
3
)
times.

In all cases, the memory needed to achieve these gains is a constant factor [memory is a factor, this sounds strange
– YANG]. We implemented our algorithm by extending the 2D data structure used in SuperLU. Our new 3D code
achieves empirical speedups up to 27× for planar graphs and up to 3.3× for non-planar graphs over the baseline 2D
SuperLU when run on 24,000 cores of a Cray XC30 (Edison at NERCS). Please see [9] for comprehensive performance
tests with a variety of real-world sparse matrices.

Remark. The algorithm structure requires that the z-dimension of the 3D process grid 𝑃𝑧 must be a power-of-two
integer. There is no restriction on the shape of the 2D grid 𝑃𝑥 and 𝑃𝑦 . The rule of thumb is to define it as square as
possible. When square grid is not possible, it is better to set the row dimension 𝑃𝑥 slightly smaller than the column
dimension 𝑃𝑦 . For example, the following are good options for the 2D grid: 2x3, 2x4, 4x4, 4x8.

Inter-grid Load-balancing in 3D SpLU Algorithm. The 3D algorithm provides two strategies for partitioning the
elimination tree to balance the load between different 2D grids. The SUPERLU3DLBS [typesetting?? – SHERRY]
environment variable specifies which one to use.

• Nested Dissection (ND) based: It uses the partitioning provided by a nested dissection ordering. It works well
for regular grids or user-provided column ordering [?? – SHERRY]. The ND strategy can only be used when
the elimination tree is binary, i.e., when the column order is also ND, and it cannot handle cases where the
separator tree has nodes with more than two children.
• The greedy Heuristic (GD) strategy uses a greedy algorithm to divide one level of the separator tree [elimi-
nation tree – SHERRY]. It seeks to minimize the maximum load imbalance among the children of that node;
if the imbalance in children is higher than 20%, it further subdivides the largest child until the imbalance falls
below 20%. The GD strategy works well for arbitrary column ordering and can handle irregular graphs; however,

6

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

SuperLU_DISTRelease v7 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(a)

NumaAlloc OMP_NUM_THREADS OMP_PLACES OMP_PROC_BIND OMP_DYNAMIC0

10

20

30

40

50

60

70
GF

LO
P/

se
c

In
te

rl
ea

ve

70.9

32
.0

70.9

co
re

s

70.9

fa
ls

e

70.9

fa
ls

e

70.9

D
ef

au
lt

67.9

64
.0

56.3

so
ck

et
s

64.6

sp
re

ad

70.7

tr
ue

66.9

th
re

ad
s

53.9

cl
os

e

53.9

(b)

nd24k torso3
matrix

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Re
la

tiv
eT

im
e

1.0 1.0
0.9

1.0
0.9

1.2

0.9

1.3

1.0

1.6

1.3

2.1128 × 1
64 × 2
32 × 4

16 × 8
8 × 16
4 × 32

Fig. 4. Best performance achieved for different OpenMP variables.[this figure is not cited in the text. Which machine? (Cori
Haswell). Explain the plots – SHERRY]

if it is used on heavily imbalanced trees, it leads to bigger ancestor sizes and, therefore, more memory than ND.
GD strategy is the default strategy unless SUPERLU3DLBS=ND is specified.

3 OPENMP INTRA-NODE PARALLELISM

SuperLU can use shared-memory parallelism in two ways. First, is by using the multithreaded BLAS library for linear-
algebraic operations. This is independent of the implementation of SuperLU itself. Second, SuperLU can use OpenMP
pragmas for explicitly parallelizing some of the computations.

OpenMP is portable across a wide variety of CPU architectures and operating systems. OpenMP offers a shared-
memory programming model, which can be easier to use than a message-passing programming model. In this section,
we discuss the advantages and limitations of using OpenMP, and offer some performance considerations.

Advantage of OpenMPParallelism. We have empirically observed that hybrid programming with MPI+OpenMP often
requires less memory than pure MPI. This is because OpenMP does not require additional memory for message passing
buffers. In most cases, correctly tuned hybrid programming with MPI+OpenMP provides better performance than pure
MPI.

Limitations of OpenMPParallelism.

• The performance of OpenMP parallelism is often less predictable than pure MPI parallelism. This is due to
non-determinism in the threading layer, the CPU hardware, and thread affinities.
• OpenMP threading may cause a significant slowdown if parameters are chosen incorrectly. Performance slow-
down often is not entirely transparent. Slow-down can be due to false-sharing, NUMA effects, hyperthreading,
incorrect or suboptimal thread affinities, or underlying threading libraries.
• Performance variation can be observed between compilers and threading libraries.
• Performance can be difficult to model or predict. Performance tuning may require some trial and error. Perfor-
mance tuning is also dependent on the CPU architecture, the number of cores, and the underlying operating
system.

3.1 OpenMP Performance tuning

[need to tie this with Section 9. These env variables need to be put in Table 1. – SHERRY]
7

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Yang Liu, Paul Lin, and Piyush Sao

Performance tuning of OpenMP applications is critical to get the desired performance. In this section, we list some
of the most important environment variables that impact the performance of SuperLU and indicate how they should be
set to achieve maximum performance.

• OMP_NUM_THREADS: controls the number of OpenMP threads. To avoid resource over subscription, the
product of MPI processes per node and OpenMP threads should be less than available physical cores.
• OMP_PLACES: Defines where OpenMP threads may run. Possible values are cores, threads, Socket. The default
value is "threads," and it’s generally a good choice. You might want to test both "cores" and "threads" values on
older processor models.
• OMP_PROC_BIND: Defines how threads map onto the OpenMP places. Possible values are false, master, close,
spread. The default value is "spread," and it’s generally a good choice. You might want to test both "close" and
"spread" values on an older processor model.
• OMP_NESTED: How many levels of openMP parallelism do you want to use; Typically, setting it to false gives
the best performance—in fact, setting it may degrade performance due to oversubscription to threads.
• OMP_DYNAMIC: decides whether to dynamically change any of the numbers of thread/ threads groups for better
performance. Typically, false gives the best performance. Setting it to true can lead to degraded performance.

The OpenMP API lets you control these variables programmatically. This becomes useful when the application and
SuperLU require different OpenMP configurations.

4 GPU-ENABLED ROUTINES

In the current release, the SpLU factorization routines can offload certain amount of computation to GPU, which is
mostly in each Schur complement update (SCU) step. We support both NVIDIA and AMD GPUs. We are actively
developing code for the Intel GPUs. To enable GPU offloading, first a compile time CPP variable needs to be defined:
-DTPL_ENABLE_CUDALIB=TRUE (for NVIDIA GPU with CUDA programming) or -DTPL_ENABLE_HIPLIB=TRUE (for AMD
GPU with HIP programming). Then, a runtime environment variable SUPERLU_ACC_OFFLOAD is used to control whether
to use GPU or not. By default, SUPERLU_ACC_OFFLOAD=1 is set. (’ACC’ means ACCelerator.)

4.1 2D SpLU algorithm and tuning parameters

The first sparse LU factorization algorithm capable of offloading the matrix-matrix multiplication to the GPU was
published in [8]. The panel factorization and the Gather/Scatter operations are on the CPU. This algorithm has
been available since SuperLU_DIST version 4.0 of the code (October 2014); however, many users are uncertain about
using it correctly due to limited documentation. This paper provides a gentle introduction to GPU acceleration in
SuperLU_DISTand its performance tuning.

Performing SCU requires some temporary storage to hold dense blocks. In an earlier algorithm, at each elimination
step, the SCU is performed one block by block. After performing updates on a block, the temporary storage can be
reused for the next block. A conspicuous advantage of this approach is its memory efficiency. Since the temporary
storage required is bounded by maximum block size. The maximum block size is a tunable parameter that trades off
local GEMM performance for inter-process parallelism. A typical setting for the maximum block size is 512 (or smaller).
However, a noticeable disadvantage of this approach is that it fails to fully utilize the abundance of local fine-grained
parallelism provided by GPUs because each GEMM is too small.

8

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

SuperLU_DISTRelease v7 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(a)

2 4 8 16 32 64 128 256 512
Max Supernode Size

2 1

20

21

22

23

24

25

26

Pe
rfo

rm
an

ce
 in

 G
FL

OP
/s

ec

torso3-OMP_NUM_THREADS=32,Intel-Haswell

(b)

4.0 8.0 16.0 32.0 64.0 128.0 256.0
NREL

0

20

40

60

80

100

120

%
 M

em
or

y
re

la
tiv

e
to

 N
re

l=
4

100 100 102 104
108

115

130Mem(L + U) Mem(IDX)

7

8

9

10

11

12

 Fa
ct

or
iza

tio
n

tim
e

in
 se

co
nd

s

Factorization Time

Fig. 5. Impact of maximum supernode size (NSUP) and supernodal relaxation (NREL) on performance and memory. [This figure is
not referenced? Should move this figure to Section 9. – SHERRY]

In [8], we modified the algorithm in the SCU step. At each step 𝑘 , we first copy the individual blocks (in skyline
storage) in the 𝑘th block row of 𝑈 into a consecutive buffer U(𝑘, :). The 𝐿(:, 𝑘) is already in consecutive storage thanks
to the supernodal structure. We, then perform a single GEMM call to compute 𝑉 ← 𝐿(:, 𝑘) ×𝑈 (𝑘, :). The matrix 𝑉
is preallocated and the size of 𝑉 needs to be sufficiently large to achieve close to peak GEMM performance. If the
size of 𝐿(:, 𝑘) ×𝑈 (𝑘, :) is larger than 𝑉 , then we partition the product into several large chunks such that each chunk
requires temporary storage smaller than 𝑉 . Given that the modern GPUs have a lot more memory than that of the
earlier generations, this extra memory is far more affordable to enable a much faster runtime.

Now, each step of SCU consists of the following substeps:

(1) Gather sparse blocks 𝑈 (𝑘, :) into a dense BLAS compilant buffer U(𝑘, :);
(2) Call dense GEMM 𝑉 ← 𝐿(:, 𝑘) × U(𝑘, :) (leading part on CPU, trailing part on GPU); and
(3) Scatter 𝑉 [] into the remaining (𝑘+1 : 𝑁,𝑘+1 : 𝑁) sparse 𝐿 and𝑈 blocks.

It should be noted that the Scatter operation can require indirect memory access, and therefore, it can be as expensive
as the GEMM cost. The Gather operation, however, has a relatively low overhead compared to other steps involved. The
GEMM offload algorithm tries to hide the overhead of Scatter and Cpu⇔ Gpu data transfer via software pipelining.
Here, we discuss the key algorithmic aspects of the GEMM offload algorithm:

• To keep both the CPU and GPU busy, we divide the U(𝑘, :) into CPU part and GPU part, so that the GEMM
call is split into [cpu : gpu] parts: 𝐿(:, 𝑘) × U(𝑘, [𝑐𝑝𝑢]) and 𝐿(:, 𝑘) × U(𝑘, [𝑔𝑝𝑢]). To hide the data transfer
cost, the algorithm further divides GEMM into multiple streams. Each stream performs its own sequence of
operations: CPU-to-GPU transfer, GEMM, and CPU-to-GPU transfer. Between these streams, these operations
are asynchronous. The GPU matrix multiplication is also pipelined with the Scatter operation performed on CPU.
• To offset the memory limitation on the GPU, we devised an algorithm to divide the SCU into smaller chunks as
{[𝑐𝑝𝑢 : 𝑔𝑝𝑢]1 | [𝑐𝑝𝑢 : 𝑔𝑝𝑢]2 | ...}. These chunks depend on the available memory on the GPU and can be sized by
the user. A smaller chunk size will result in many iterations of the loop.

There are two environment variables that can be used to control the memory and performance in the GEMM offload
algorithm:

• number of GPU streams 𝑛𝑠 (NUM_GPU_STREAMS, default is 8); and
9

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Yang Liu, Paul Lin, and Piyush Sao

• maximum buffer size (in words) on GPU that can hold the GEMM output matrix𝑉 (MAX_BUFFER_SIZE, default is
256000000, i.e., 256M).

This simple GEMM offload algorithm has limited performance gains. We observed roughly 2-3× speedup over the
CPU-only code for a range of sparse matrices.

4.2 3D SpLU algorithm and tuning parameters

We extend the 3D algorithm for heterogeneous architectures by adding the Highly Asynchronous Lazy Offload (Halo)
algorithm for co-processor offload [?]. Compared to the GPU algorithm in the 2D code Section 4.1, this algorithm also
offloads the Scatter operations of each SCU step to GPU (in addition to the GEMM call).

On 4096 nodes of a Cray XK7 (Titan at ORNL) with 32,768 CPU cores and 4096 Nvidia K20x GPUs, the 3D algorithm
achieves empirical speedups up to 24× for planar graphs and 3.5× for non-planar graphs over the baseline 2D SuperLU

with co-processor acceleration.
The performance related environment variables are:

• NUM_LOOKAHEADS, number of lookahead levels (default is 10)explain this,
guidance? New performance numbers on larger nodes on a new GPUs, A100 (Perlmutter), MI100 (Spock)?? (Piyush)

4.3 2D SpTRSV algorithm

When the 2D grid has one MPI, SpTRSV in SuperLU is parallelized using OpenMP for shared-memory parallelism and
CUDA/HIP for the GPU. Both versions of the implementations are based a asynchronous level-set traversal algorithm
that distributes the computation workloads across CPU threads and GPU threads/blocks. The CPU implementation
supports OpenMP taskloops and tasks for dynamic scheduling, while the GPU implementation relies on static scheduling.
Fig. 6a shows the performance of L-solve on 1 Cori Haswell node with 1 and 32 OpenMP threads. Fig. 6b shows the
performance of L-solve using SuperLU (8 Summit CPU cores or 1 Summit V100 GPU) and CUSPARSE (1 Summit V100
GPU). The GPU SpTRSV in SuperLU constantly overperforms CUSPARSE and is comparable to 8-Core CPU results.

When the 2D grid has more than 1 MPIs, SpTRSV also supports OpenMP parallelism with degraded performance. In
addition, the multi-GPU SpTRSV in SuperLU is under actively development and will be avai

5 MIXED-PRECISION ROUTINES

SuperLU has long supported four distinct floating-point types: IEEE FP32 real and complex, IEEE FP64 real and complex.
Furthermore, the library allows all four datatypes to be used together in the same application. This is usually not
supported by many other libraries.

Recent hardware trends have motivated increased development ofmixed-precision numerical libraries, mainly because
hardware vendors have started designing special-purpose units for low precision arithmetic with higher speed. In direct
linear solvers, a well understood method is to use lower precision to perform factorization (expensive) and higher
precision to perform iterative refinement (IR) to recover accurracy (cheap). In a typical sparse matrix resulting from
the 3D finite difference discretization of a regular mesh, the SpLU needs O

(
𝑛2) flops while each IR step needs only

O
(
𝑛4/3

)
flops (including SpMV and SpTRSV).

In the dense LU and QR factorizations, the benefit of lower precision format mainly comes from accelerated GEMM
speed. But in the sparse case, the dimensions of the GEMM are generally smaller and of non-uniform size throughout
factorization. Therefore, the speed gain from GEMM alone is limited. In addition to GEMM, a nontrivial cost is Scatter

10

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

SuperLU_DISTRelease v7 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(a) L-solve time with 1 and 32 OpenMP threads on Cori
Haswell

m
at

ri
x
0
5

A
3
0

co
p
te

r2

g
as

_
se

n
so

r

m
at

ri
x
-n

ew
_
3

x
en

o
n
2

sh
ip

se
c1

x
en

o
n
1

g
7
ja

c1
6
0

g
7
ja

c1
4
0
sc

m
ar

k
3
ja

c1
0
0
sc

ct
2
0
st

if

v
an

b
o
d
y

n
cv

x
b
q
p
1

d
aw

so
n
5

2
D

_
5
4
0
1
9
_
h
ig

h
K

g
ri

d
g
en

a

ep
b
3

to
rs

o
2

to
rs

io
n
1

b
o
y
d
1

h
v
d
c2

ra
ja

t1
6

h
ci

rc
u
it10

-3

10
-2

10
-1

T
im

e

1 OpenMP threads 32 OpenMP threads

(b) L-solve time of SuperLU and CuSparse on CPU and GPU

gl
ob

al
m

at
11

8_
15

36

m
at

rix
05

co
pt

er
2

ep
b3

gr
id

ge
na

va
nb

od
y

sh
ip

se
c1

da
w

so
n5

ga
s_

se
ns

or

ra
ja

t1
6

0

0.5

1

1.5

2

2.5
CUSPARSE

GPU SuperLU

CPU(8-core) SuperLU

Fig. 6. Performance of SpTRSV with 1 MPI.

(a) Time breakdown of various steps of FP32 SpLU, “Other”
mostly consists of MPI communication

(b) Comparision of SpLU time between the FP32 and FP64
versions

Fig. 7. Times of FP32 and FP64 SpLU for 5 matrices. All are measured on 10 nodes of ORNL Summit with 6 MPI tasks and 6 GPUs per
node.

operation. In Figure 7 we tally the time of various steps in SpLU and the time comparision of using FP32 vs. FP64. These
are measured times for five real matrices of dimension on the order of 1 million or so. As can be seen, depending on the
matrix sparsity structure, the fraction of time in GEMM varies, and usually is less than 50% (left plot). Because of this,
the Tensor Core version of GEMM calls led to only less than 5% speedup for the whole SpLU. When comparing FP32
with the FP64 versions, we observed about 50% speedup with the FP32 version (right plot).

The simplest mixed precision sparse direct solver is to use lower precision for the expensive LU and QR factorizations,
and higher precision in the cheap residual and solution update in IR. We recall the IR algorithm using three precisions

11

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Yang Liu, Paul Lin, and Piyush Sao

(a) audikw_1 convergence history (b) Ga19As19H2 convergence history

Fig. 8. Convergence history of Algorithm 1 when applied to two sparse linear systems. The vertical line in each plot corresponds to
the IR steps taken when our stopping criteria are satisfied.

in Algorithm 1 [2, 3]. This algorithm is already available as xGERFSX functions in LAPACK, where the input matrix is
dense and so is LU. Potentially, the following three precisions may be used:

• 𝜀𝑤 is the working precision; it is used as the input data 𝐴 and 𝑏, and output 𝑥 .
• 𝜀𝑥 is the precision for the computed solution 𝑥 (𝑖) . We require 𝜀𝑥 ≤ 𝜀𝑤 , possibly 𝜀𝑥 ≤ 𝜀2

𝑤 if necessary for
componentwise convergence.
• 𝜀𝑟 is the precision for the residuals 𝑟 (𝑖) . We usually have 𝜀𝑟 ≤ 𝜀2

𝑤 , i.e., at least twice the working precision.

Algorithm 1 Three-precisions Iterative Refinement (IR) for Direct Linear Solvers

1: Solve 𝐴𝑥 (1) = 𝑏 using the basic solution method (e.g., LU or QR) ⊲ (𝜀𝑤)
2: 𝑖 = 1
3: repeat
4: 𝑟 (𝑖) ← 𝑏 −𝐴𝑥 (𝑖) ⊲ (𝜀𝑟)
5: Solve 𝐴𝑑𝑥 (𝑖+1) = 𝑟 (𝑖) using the basic solution method ⊲ (𝜀𝑤)
6: Update 𝑥 (𝑖+1) ← 𝑥 (𝑖) + 𝑑𝑥 (𝑖+1) ⊲ (𝜀𝑥)
7: 𝑖 ← 𝑖 + 1
8: until 𝑥 (𝑖) is “accurate enough”
9: return 𝑥 (𝑖) and error bounds

Algorithm 1 converges with small normwise (or componentwise) error and error bound if the normwise (or compo-
nentwise) condition number of 𝐴 does not exceed 1/(𝛾 (𝑛)𝜀𝑤). Moreover, this IR procedure can return to the user the
reliable error bounds both normwise and componentwise. The error analysis in [2] should all carry through to the
sparse cases.

We implemented Algorithm 1 in SuperLU, using two precisions in IR:

• 𝜀𝑤 = 2−24 (IEEE-754 single precision), 𝜀𝑥 = 𝜀𝑟 = 2−53 (IEEE-754 double precision)

In Figure 8, the left two plots show the convergence history of two systems, in both normwise foward and backward
errors, 𝐹𝑒𝑟𝑟 and 𝐵𝑒𝑟𝑟 , respectively (defined below). We perform two experiments: one using single precision IR, the

12

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

SuperLU_DISTRelease v7 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

other using double precision IR. As can be seen, single precision IR does not reduce much 𝐹𝑒𝑟𝑟 , while double precision
𝐼𝑅 delivers 𝐹𝑒𝑟𝑟 close to 𝜀𝑤 . The IR time is usually under 10% of the factorization time. Overall, the mixed-precision
speed is still faster than using pure FP64 all around, see Table 1.

Table 1. Parallel solution time (seconds) (including SpLU and IR): purely double precision, purly single precision, and mixed precision
(FP32 SpLU + FP64 IR). ORNL Summit using up to 8 nodes, each node uses 6 CPU Cores (C) and 6 GPUs (G).

Matrix Precision 6 C+G 24 C+G 48 C+G Matrix Precision 6 C+G 24 C+G 48 C+G
audikw_1 Double 65.9 21.1 18.9 Ga19As19H42 Double 310.9 62.4 34.3

Single 45.8 13.8 10.5 Single 258.1 48.2 25.8
Mixed 49.2 13.9 11.4 Mixed 262.8 48.8 26.1

The driver routines for this mixed-precision setup are psgsssvx and psgssvx3d, with the following API:

void psgssvx(superlu_dist_options_t *options, SuperMatrix *A,

sScalePermstruct_t *ScalePermstruct,

float B[], int ldb, int nrhs, gridinfo_t *grid,

sLUstruct_t *LUstruct, sSOLVEstruct_t *SOLVEstruct,

float *berr, SuperLUStat_t *stat, int *info)

To use double precision IR, we need to set: options->IterRefine = SLU_DOUBLE.

6 SUMMARY OF PARAMETERS, ENVIRONMENT VARIABLES AND PERFORMANCE INFLUENCE

Throughout all phases of the solution process, there are a number of algorithm parameters that can influence solver’s
performance and that can be modified by the user. For each user-callable routine, the first argument is usually an
input options argument, which points to the structure containing a number of algorithm choices. These choices are
determined at compile time. The second column in Table 2 lists the named fields in the options argument. The fourth
column lists all the possible values and their corresponding C’s enumerated constant names. The user should call the
the following routine to set up the default values.

superlu_dist_options_t options;

set_default_options_dist(&options);

After setting the defaults, the user can modify each default, for example:

options.RowPerm = LargeDiag_HWPM;

For some other parameters, the user can change them at run time via environment variables. These parameters are
listed in the third column in Table 2.

Many of the parameters and environment variables listed in Table 2 are performance critical for the 2D and 3D, CPU
and GPU algorithms described in Sections 2, 4.1 and 4.2. Here we leverage an autotuner called GPTune [7] to tune the
performance (time and memory) of SpLU. We consider two example matrices from the Suitesparse matrix collection,
G3_circuit from circuit simulation and H2O from quantum chemistry simulation. For all the experiments, we consider
a two-objective tuning scenario and generate a Pareto front from the samples demonstrating the tradeoff between
memory and CPU requirement of SpLU.

13

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Yang Liu, Paul Lin, and Piyush Sao

Table 2. List of algorithm parameters used in various phases of the linear solver. The ’(env)’ notion marks the environment variables
that can be reset at runtime. The other parameters must be set in the options{} structure input to a driver routine. [how about other
command line options, such as -r, -c, -d? – YANG]->[those are user’s responsibility. They will have their own “pddrive”
– SHERRY]

phase options (compile time) env variables (runtime) values / enum constants in 2D or 3D algo. ?
Preprocessing Equil NO, YES (default) 2d, 3d

RowPerm 0: NOROWPERM 2d, 3d
1: LargeDiag_MC64 (default) 2d, 3d
2: LargeDiag_HWPM 2d, 3d
3: MY_PERMR 2d, 3d

ColPerm 0: NATURAL 2d, 3d
1: MMD_ATA 2d, 3d
2: MMD_AT_PLUS_A 2d, 3d
3: COLAMD 2d, 3d
4: METIS_AT_PLUS_A (default) 2d, 3d
5: PARMETIS 2d, 3d
6: ZOLTAN 2d, 3d
7: MY_PERMC 2d, 3d

ParSymbFact YES, NO (default) 2d, 3d
SpLU ReplaceTinyPivot YES, NO (default) 2d, 3d

Algo3d YES, NO (default) 3d
DiagInv YES, NO (default) 2d
num_lookaheads NUM_LOOKAHEADS default 10 2d, 3d

NUM_OMP_THREADS default ???? 2d, 3d
OMP_PLACES default ???? 2d, 3d
OMP_PROC_BIND default ???? 2d, 3d
OMP_NESTED default ???? 2d, 3d
OMP_DYNAMIC default ???? 2d, 3d
NREL default 60, set via sp_ienv(2) 2d, 3d
NSUP default 256, set via sp_ienv(3) 2d, 3d
RANKORDER default Z-major 3d
SUPERLULBS default GD 3d
SUPERLU_ACC_OFFLOAD 0, 1 (default) 2d, 3d
N_GEMM default 1000 2d
MAX_BUFFER_SIZE 250 million 2d, 3d
NUM_GPU_STREAMS default 8 2d, 3d
MPI_PROCESS_PER_GPU default 1 2d, 3d

SpTRSV IterRefine 0: NOREFINE (default ???) 2d, 3d
1: SLU_SINGLE
2: SLU_DOUBLE

Others PrintStat NO, YES (default) 2d, 3d

6.1 3D CPU SpLU

For the 3D CPU SpLU algorithm (2), we use 16 NERSC Cori Haswell nodes and the G3_circuit matrix. The number of
OpenMP threads is set to 1, so there are a total of 512 MPIs. We consider the following tuning parameters [NSUP, NREL,
num_lookaheads, 𝑃𝑥 , 𝑃𝑧]. We set up GPTune to generate 100 samples. All samples and the Pareto front are plotted in
Fig. 9a. The samples on the Pareto front and the default one are shown in Table 3, one can clearly see that by reducing
the computation granularity (NSUP, NREL) and increasing 𝑃𝑧 , one can significantly improve the SpLU time yet uses
slightly higher memory.

14

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

SuperLU_DISTRelease v7 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(a) 3D CPU SpLU

10
0

10
1

10
2

10
3

2500

3000

3500

4000
All samples

Pareto optima

Default

(b) 2D GPU SpLU

15 20 40 80

1

1.5

2
10

4

All samples

Pareto optima

Default

(c) 3D GPU SpLU

10 20 40

4000

6000

8000

10000

12000

All samples

Pareto optima

Default

Fig. 9. Samples generated by GPTune for the three tuning experiments. Only valid samples are plotted.

6.2 2D GPU SpLU

For the 2D GPU SpLU algorithm (4.1), we use 2 NERSC Perlmutter GPU nodes with 4 MPIs per node and the H2O
matrix. The number of OpenMP threads is set to 16. We consider the following tuning parameters [ColPerm, NSUP,
NREL, N_GEMM , MAX_BUFFER_SIZE, 𝑃𝑥]. We set up GPTune to generate 100 samples. All samples and the Pareto front are
plotted in Fig. 9b. The samples on the Pareto front and the default one are shown in Table 4. Compared to the default
configuration, both the time and memory can be significantly improved by Increasing the computation granularity
(larger NSUP, NREL). Also, less GPU offload (larger N_GEMM) leads to better performance.

6.3 3D GPU SpLU

For the 3D GPU SpLU algorithm (4.2), we use 2 NERSC Perlmutter GPU nodes with 4 MPIs per node and the H2O
matrix. The number of OpenMP threads is set to 16. We consider the following tuning parameters [ColPerm, NSUP,
NREL, MAX_BUFFER_SIZE, 𝑃𝑥 , 𝑃𝑧]. We set up GPTune to generate 200 samples. All samples and the Pareto front are
plotted in Fig. 9c. The samples on the Pareto front and the default one are shown in Table 5. Compared to the default
configuration, both the time and memory can be significantly improved by increasing the computation granularity and
decreasing GPU buffer sizes. ColPerm=‘4’ (METIS_AT_PLUS_A) is always preferable in terms of memory usage. The
effects of 𝑃𝑥 and 𝑃𝑧 are insignificant as there are only 8 MPIs used.

NSUP NREL num_lookaheads 𝑃𝑥 𝑃𝑧 Time (s) Memory (MB)
Default 256 60 10 16 1 5.6 2290
Tuned 31 25 17 16 1 21.9 2253
Tuned 53 35 7 4 4 1.64 2360

Table 3. Default and optimal samples returned by GPTune for the 3D CPU SpLU algorithm.

7 FORTRAN 90 INTERFACE

In FORTRAN/ directory, there are Fortran 90 module files that implement the wrappers for the Fortran 90 programs
to access the full functionality of the C functions in SuperLU. The design is based on object-oriented programming
concept: define opaque objects in the C space, which are accessed via handles from the Fortran 90 space. All SuperLU
objects (e.g., process grid, LU structure) are opaque from Fortran 90 side. They are allocated, deallocated and operated

15

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Yang Liu, Paul Lin, and Piyush Sao

ColPerm NSUP NREL N_GEMM MAX_BUFFER_SIZE 𝑃𝑥 Time (s) Memory (MB)
Default ‘4’ 256 60 1000 2.5E8 4 20.8 6393
Tuned ‘4’ 154 154 2048 2.68E8 2 13.5 6011
Tuned ‘4’ 345 198 262144 6.7E7 2 13.2 6813
Tuned ‘4’ 124 110 8192 1.3E8 2 14.6 5976
Table 4. Default and optimal samples returned by GPTune for the 2D GPU SpLU algorithm.

ColPerm NSUP NREL MAX_BUFFER_SIZE 𝑃𝑥 𝑃𝑧 Time (s) Memory (MB)
Default ‘4’ 256 60 2.5E8 4 1 25.3 3520
Tuned ‘4’ 176 143 1.34E8 2 1 12.1 3360
Tuned ‘4’ 327 182 1.34E8 4 2 7.4 3752
Tuned ‘4’ 610 200 3.34E7 8 1 12.5 3280
Tuned ‘4’ 404 187 3.34E7 1 2 8.76 3744
Tuned ‘4’ 232 199 3.34E7 4 2 6.7 3936

Table 5. Default and optimal samples returned by GPTune for the 3D GPU SpLU algorithm.

at the C side. For each C object, we define a Fortran 90 handle in Fortran’s user space, which points to the C object and
implements the access methods to manipulate the object. All handles are 64-bit integer type. For example, consider
creating a 3D process grid, the following code snippet shows what are involved from the Fortran and C sides.

• Fortran 90 side

/* Declare handle: */

integer(64)::f_grid3d

/* Call C wrapper routine to create 3D grid pointed to by "f_grid3d": */

call f_superlu_gridinit3d(MPI_COMM_WORLD, nprow, npcol, npdep, f_grid3d)

• C side

/* Fortran-to-C interface routine: */

void f_superlu_gridinit3d(int *MPIcomm, int *nprow, int *npcol,int *npdep, int64_t *f_grid3d)

{

/* Actual call to C routine to create grid3d structture in *grid3d{} */

superlu_gridinit3d(f2c_comm(MPIcomm),*nprow, *npcol, *npdep, (gridinfo3d_t *) *f_grid3d);

}

Here, the Fortran handle f_grid3d essentially acts as a 64-bit pointer pointing to the internal 3D grid structure,
which is created by the C routine superlu_gridinit3d(). This structure (see Fig. 3) sits in the C space and is invisible
from the Fortran side.

For all the user-callable C functions, we provide the corresponding Fortran-to-C interface functions, so that the Fortran
program can access all the C functionality. These interface routines are implemented in the files superlu_c2f_wrap.c
(precision-independent) and superlu_c2f_dwrap.c (double precision). The Fortran-to-C name mangling is handled by
CMake through the header file SRC/superlu_FCnames.h. The module file superlupara.f90 defines all the constants

16

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

SuperLU_DISTRelease v7 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

matching the enum constants defined in the C side (see Table 2). The module file superlu_mod.f90 implements all the
access methods (set/get) for the Fortran side to access the objects created in the C user space.

8 INSTALLATIONWITH CMAKE OR SPACK

8.1 Dependent external libraries

You can have a bare minimum installation of SuperLU without any external dependencies. although the following
external libraries are useful for high performance: BLAS, (Par)METIS (sparsity-preserving ordering), CombBLAS (parallel
numerical pivoting) and LAPACK (for inversion of dense diagonal block).

8.2 CMake installation

You will need to create a build tree from which to invoke CMake. The following describes how to define the external
libraries.

BLAS (highly recommended)
If you have a fast BLAS library on your machine, you can link it using the following cmake definition:

-DTPL_BLAS_LIBRARIES="<BLAS library name>"

Otherwise, the CBLAS/ subdirectory contains the part of the C BLAS (single threaded) needed by SuperLU, but
they are not optimized for speed. You can compile and use this internal BLAS with the following cmake definition:

-DTPL_ENABLE_INTERNAL_BLASLIB=ON

ParMETIS (highly recommended)
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/parmetis-4.0.3.tar.gz
You can install ParMETIS and define the two environment variables as follows:

export PARMETIS_ROOT=<Prefix directory of the ParMETIS installation>

export PARMETIS_BUILD_DIR=${PARMETIS_ROOT}/build/Linux-x86_64

Note that by default, we use serial METIS as the sparsity-preserving ordering. which is available in the ParMETIS
package. You can disable ParMETIS during installationwith the following CMake definition: -DHAVE_PARMEETIS=FALSE.
In this case, the default ordering is set to be MMD_AT_PLUS_A.
See Table 2 for all the possible ColPerm options.
In order to use parallel symbolic factorization function, you need to use ParMETIS ordering.

LAPACK (optional) [YANG: is this required for GPU? – SHERRY]
In triangular solve routine, we may use LAPACK to explicitly invert the dense diagonal block to improve speed.
You can use it with the following cmake option:

-DTPL_ENABLE_LAPACKLIB=ON

CombBLAS (optional)
https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/index.html
In order to use parallel weighted matching HWPM (Heavy Weight Perfect Matching) for numerical pre-
pivoting [1], you need to install CombBLAS and define the environment variables:

export COMBBLAS_ROOT=<Prefix directory of the CombBLAS installation>

export COMBBLAS_BUILD_DIR=${COMBBLAS_ROOT}/_build

17

http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/parmetis-4.0.3.tar.gz
https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/index.html

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Yang Liu, Paul Lin, and Piyush Sao

Then, install with cmake option:

-DTPL_ENABLE_COMBBLASLIB=ON

Use GPU
You can enable (NVIDIA) GPU with CUDA with the following cmake option:

-DTPL_ENABLE_CUDALIB=TRUE

You can enable (AMD) GPU with HIP with the following cmake option:

-DTPL_ENABLE_HIPLIB=TRUE

For a simple installation with default setting, do:

mkdir build ; cd build;

cmake .. \

-DTPL_PARMETIS_INCLUDE_DIRS="${PARMETIS_ROOT}/include;\

${PARMETIS_ROOT}/metis/include" \

-DTPL_PARMETIS_LIBRARIES="${PARMETIS_BUILD_DIR}/libparmetis/libparmetis.a;\

${PARMETIS_BUILD_DIR}/libmetis/libmetis.a" \

There are a number of example scripts in example_script/ directory, with filenames run_cmake_build_*.sh that
are used on various machines.

To actually build (compile), type: ’make’.
To install the libraries, type: ’make install’.
To run the installation test, type: ’test’. (The outputs are in file: ’build/Testing/Temporary/LastTest.log’) or, ’ctest -D

Experimental’, or, ’ctest -D Nightly’.
Note: The parallel execution in ctest is invoked by "mpiexec" command which is from MPICH environment. If your

MPI is notMPICH/mpiexec based, the test executionmay fail. You can pass the definition option -DMPIEXEC_EXECUTABLE
to cmake. For example onCori at NERSC, youwill need the following: cmake .. -DMPIEXEC_EXECUTABLE=/usr/bin/srun.

Or, you can always go to TEST/ directory to perform testing manually.
The following list summarize the commonly used CMake definitions. In each case, the first choice is the default

setting. After running ’cmake’ installation, a configuration header file is generated in SRC/superlu_dist_config.h,
which contains the key CPP definitions used throughout the code.

-DTPL_ENABLE_INTERNAL_BLASLIB=OFF | ON

-DTPL_ENABLE_PARMETISLIB=ON | OFF

-DTPL_ENABLE_LAPACKLIB=OFF | ON

-DTPL_ENABLE_COMBBLASLIB=OFF | ON

-DTPL_ENABLE_CUDALIB=OFF | ON

-DCMAKE_CUDA_FLAGS=<...>

-DTPL_ENABLE_HIPLIB=OFF | ON

-DHIP_HIPCC_FLAGS=<...>

-Denable_complex16=OFF | ON (double-complex datatype)

-Denable_single=OFF | ON (single precisiion real datatype)

-DXSDK_INDEX_SIZE=32 | 64 (integer size for indexing)

-DBUILD_SHARED_LIBS= OFF | ON

18

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

SuperLU_DISTRelease v7 Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

-DCMAKE_INSTALL_PREFIX=<...>.

-DCMAKE_C_COMPILER=<MPI C compiler>

-DCMAKE_C_FLAGS=<...>

-DCMAKE_CXX_COMPILER=<MPI C++ compiler>

-DCMAKE_CXX_FLAGS=<...>

-DXSDK_ENABLE_Fortran=OFF | ON

-DCMAKE_Fortran_COMPILER=<MPI F90 compiler>

8.3 Spack installation

Spack installation of SuperLU_DIST is a fully automated process. Assume that the develop branch of Spack (https://github.com/spack/spack)
is used. You can find available compilers via: spack compilers. In the following, let’s assume the available compiler is
gcc@9.1.0. The installation supports the following variants:

Use 64-bit integer.
You can enable 64bit-integer with

spack install superlu-dist@7.2.0+int64%gcc@9.1.0

Use GPU.
You can enable (NVIDIA or AMD) GPUs with:

spack install superlu-dist@7.2.0+cuda%gcc@9.1.0

spack install superlu-dist@7.2.0+rocm%gcc@9.1.0

Test installation.
You can run a few smoke tests of the spack installation via

spack test run superlu-dist@7.2.0 (pick the appropriate installation if multiple variants available)

9 PETSC INTERFACEWITH GPU CAPABILITY

https://petsc.org/main/docs/manualpages/Mat/MATSOLVERSUPERLU_DIST.html
Sherry

ACKNOWLEDGMENTS

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear Security Administration, and in part by the Scientific
Discovery through Advanced Computing (SciDAC) Program under the Office of Science at the U.S. Department of
Energy.

REFERENCES
[1] A. Azad, A. Buluc, X.S. Li, X. Wang, and J. Langguth. 2020. A Distributed-Memory Algorithm for Computing a Heavy-Weight Perfect Matchi ng on

Bipartite Graphs. SIAM J. Scientific Computing 42, 4 (2020), C143–C168.
[2] J. Demmel, Y. Hida, W. Kahan, X.S. Li, S. Mukherjee, and E.J. Riedy. 2006. Error Bounds from Extra-Precise Iterative Refinement. ACM Trans. Math.

Softw. 32, 2 (June 2006), 325–351.
[3] J. Demmel, Y. Hida, E.J. Riedy, and X.S. Li. 2009. Extra-precise iterative refinement for overdetermined least squares problems. ACM Transactions on

Mathematical Software (TOMS) 35, 4 (2009), 28.

19

https://petsc.org/main/docs/manualpages/Mat/MATSOLVERSUPERLU_DIST.html

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiaoye S. Li, Yang Liu, Paul Lin, and Piyush Sao

[4] X.S. Li, J.W. Demmel, J.R. Gilbert, L. Grigori, P. Sao, M. Shao, and I. Yamazaki. 1999. SuperLU Users’ Guide. Technical Report LBNL-44289. Lawrence
Berkeley National Laboratory. https://portal.nersc.gov/project/sparse/superlu/. Last update: June 2018.

[5] X. S. Li and J. W. Demmel. 1998. Making Sparse Gaussian Elimination Scalable by Static Pivoting. In Proceedings of SC98: High Performance Networking
and Computing Conference. Orlando, Florida.

[6] X. S. Li and J. W. Demmel. 2003. SuperLU_DIST: A Scalable Distributed-Memory Sparse Direct Solver for Unsymmetric Linear Systems. ACM Trans.
Mathematical Software 29, 2 (June 2003), 110–140.

[7] Yang Liu, Wissam M. Sid-Lakhdar, Osni Marques, Xinran Zhu, Chang Meng, James W. Demmel, and Xiaoye S. Li. 2021. GPTune: Multitask Learning
for Autotuning Exascale Applications. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Virtual
Event, Republic of Korea) (PPoPP ’21). Association for Computing Machinery, New York, NY, USA, 234–246. https://doi.org/10.1145/3437801.3441621

[8] P. Sao, R. Vuduc, and X. Li. 2014. A Distributed CPU-GPU Sparse Direct Solver. In Proc. of Euro-Par 2014, LNCS Vol. 8632, pp. 487-498. Porto, Portugal.
[9] P. Sao, R. Vuduc, and X. Li. 2019. A communication-avoiding 3D algorithm for sparse LU factorization on heterogeneous systems. J. Parallel

and Distributed Computing (September 2019). https://doi.org/10.1016/j.jpdc.2019.03.004 https://www.sciencedirect.com/science/article/abs/pii/
S0743731518305197.

[10] I. Yamazaki and X.S. Li. 2012. New Scheduling Strategies and Hybrid Programming for a Parallel Right-looking Sparse LU Factorization on Multicore
Cluster Systems. In Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS 2012). Shanghai, China.

20

https://portal.nersc.gov/project/sparse/superlu/
https://doi.org/10.1145/3437801.3441621
https://doi.org/10.1016/j.jpdc.2019.03.004
https://www.sciencedirect.com/science/article/abs/pii/S0743731518305197
https://www.sciencedirect.com/science/article/abs/pii/S0743731518305197

	Abstract
	Contents
	1 Overview of SuperLU and SuperLU_DIST
	2 3D Communication-Avoiding Routines
	2.1 The 3D Process layout and its performance impact

	3 OpenMP Intra-node Parallelism
	3.1 OpenMP Performance tuning

	4 GPU-enabled Routines
	4.1 2D SpLU algorithm and tuning parameters
	4.2 3D SpLU algorithm and tuning parameters
	4.3 2D SpTRSV algorithm

	5 Mixed-precision Routines
	6 Summary of Parameters, Environment Variables and Performance Influence
	6.1 3D CPU SpLU
	6.2 2D GPU SpLU
	6.3 3D GPU SpLU

	7 Fortran 90 Interface
	8 Installation with CMake or Spack
	8.1 Dependent external libraries
	8.2 CMake installation
	8.3 Spack installation

	9 PETSc Interface with GPU Capability
	Acknowledgments
	References

