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ABSTRACT
Exascale computing, now a reality, still faces many challenges to

achieve optimal performance with the load balanced on large num-

bers of nodes. A key challenge is the message passing interface

(MPI) which is a critical component for process communication on

exascale systems. This paper explores communication optimization

strategies to harness the hybrid accelerated architectures of gpu

accelerated supercomputers fully. We focus on MPI applications

where processors form a two-dimensional process grid which is

a common arrangement in applications involving dense matrix

operations. This configuration offers a unique opportunity to im-

plement innovative optimization strategies to improve performance

and maintain effective load distribution. Building on this, we study

two applications—APSP (all-pair-shortest-path) and HPL-MxP (LU

factorization with Mixed precision)—on two accelerated architec-

tures: Summit IBM Power with Nvidia V100 and Frontier AMD

MI250X with AMD Epyc. We show how to scale up both appli-

cations to exascale levels and tackle the MPI challenges related

to implementation, synchronization, and performance. We also

compare the performance of several communication strategies at

a unprecedented scale. Accurately predicting application perfor-

mance becomes crucial for cost reduction as the computation scale

grows. To address this, we suggest a hyperbolic model as a bet-

ter alternative to the traditional one-sided asymptotic model for

predicting future application performance at such large scales.
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1 INTRODUCTION
The advent of exascale computing has opened up new avenues

of scientific discovery and innovation. However, it also presents

a unique set of challenges in achieving optimal performance and

efficient load balancing of the system resources. One of the key as-

pects of exascale computing is the Message Passing Interface (MPI),

which plays a crucial role in process communication within these

systems. This paper focuses on MPI applications where processors

form a two-dimensional process grid which is a common arrange-

ment for applications involving dense matrix operations. We delve

into two specific applications — the distributed memory-Floyd War-

shall algorithm for computing all-pair shortest paths (APSP) and

the high-performance Linpack in mixed precision (HPL-MxP) [10]

implementation.

The distributed memory-Floyd Warshall algorithm is employed

for computing all-pair shortest paths between different vertices in a

graph. Unlike traditional algorithms, this approach uses a semi-ring

multiplication operation, a mathematical structure akin to a ring

but devoid of the requirement of additive inverses. This unique

feature allows for efficient computation and storage, particularly

when managing large-scale graphs.

In contrast, HPL-MxP stands as a testament to the power of

LINPACK (Linear Algebra Package), a software library specifically

designed to perform numerical linear algebra computations on

large-scale systems with a distributed memory architecture. The

LINPACK benchmark measures the performance of computer sys-

tems in solving dense systems of linear equations using LU decom-

position. The utilization of mixed precision in the HPL framework

further extends its use for AI-like workloads on exascale systems.

Both the APSP and HPL-MxP cases share common challenges

and strategies. At every iteration, row and column broadcasts are

required, typically involving a look-ahead strategy to overlap com-

putation with communication. One of the primary obstacles lies in

optimizing this communication and efficiently mapping computa-

tion to the architecture within the context of a two-dimensional

process grid.

The incorporation of Graphics Processing Unit (GPU) acceler-

ators in supercomputers presents additional challenges. The pro-

gramming model of GPUs differs from that of traditional Central

Processing Units (CPUs), adding another layer of complexity when

1
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trying to achieve an efficient communication overlap with compu-

tation.

This paper’s primary focus is optimizing the broadcast opera-

tions for such applications, specifically overlapping communica-

tion with computation and efficiently mapping computation to the

architecture. We also aim to provide a model for predicting appli-

cation performance at the exascale level, vital for cost reduction

as computation scales grow. Moreover, we will discuss the desired

MPI features that can facilitate the expression of such optimiza-

tion strategies, further boosting the performance and efficiency of

exascale computing applications. Exscale, MPI, 2D grid

2 BACKGROUND
2.1 System Information
In this paper, our study focus on two different architectures of

super computers that are hosted in OLCF, Frontier and Summit. A

brief overview of the key architectural specifications and software

stacks are in Table 1. The key difference we like to point out is the

network interconnect location. The NICs reside on the GPUs in

Frontier system, which removes the traditional overhead of copying

network data back to CPU. On the other hand, Summit system

contains two socket per node, and the two NICs reside on each of

the socket. Hardware and software features for combining the two

NICs for single off node MPI communication is provided. The node

architecture is showed in Fig 1 and 2

Another main difference is the ration of GCDs to GPU. Summit

system has one GCD per GPU and Frontier system contain two

GCDs per GPU. Each GCD is used as a separate accelerator.

Power9-(b)Power9-(a)

V100 V100

V100

V100 V100

V100

NVMe 

Figure 1: Summit Node architecture. Bandwidth for connec-
tion: 64 GB/S CPU to CPU (red), 16 GB/S CPU to NICs (or-
ange), 50 GB/S GPU to CPU (blue)

2.2 HPL-MxP
TheHPL-MxP benchmarkwas designed for evaluation of the system

mixed precision capability by finding the unique solution to a dense

system of linear equations 𝐴𝑥 = 𝑏, where 𝐴 ∈ R𝑁×𝑁 is a full rank

matrix and 𝑥, 𝑏 ∈ R𝑁 are the solution and right-hand side vectors,

respectively. In contrast with the HPL benchmark, HPL-MxP allows

GCD
HBM

HBM

HBM

HBM

GCD
HBM

HBM

HBM

HBM

GCD
HBM

HBM

HBM

HBM

GCD
HBM

HBM

HBM

HBM

GCD
HBM

HBM

HBM

HBM

GCD
HBM

HBM

HBM

HBM

GCD
HBM

HBM

HBM

HBM

GCD
HBM

HBM

HBM

HBM

CCD CCD

CCD CCD

CCD CCD

CCD CCD

Figure 2: Frontier Node architecture. Bandwidth for connec-
tion: 50 GB/S GPU to GPU (green), 50 GB/S GPU to NICs
(blue)

Summit Frontier

Number of Nodes 4608 9408

Processor Power9 3rd Gen EPYC

CPU memory (Node) 512 GB 512 GB

GPU / # of GCDs (Node) NVIDIA V100/6 AMD MI250X/8

memory per GPU 16 GB 128 GB

GPU Interconnect NVLINK Infinity Fabric

GPU Interconnect B/W 50+50 GB/s 50+50 GB/s

FP64 TFLOPS (GCD) 7.8 54.5

FP16 TFLOPS (GCD) 125 191

# of NICs 2x Mellanox 4x Slingshot-11

EDR IB

NIC B/W (node) 12.5+12.5 GB/s 25+25 GB/s

MPI Library

spectrum-

mpi/10.4.0.3

cray-

mpich/8.1.25

GPU Library cuda/11.4.2 rocm/5.4.3

Compilers gcc/9.1.0 gcc/9.1.0

Table 1: Key architectural and software stack specifications
for Summit and Frontier

for the input matrix to have an appropriate condition number to

omit the pivoting step during the LU factorization [9, Chapter 9].

More importantly, it allows the use of a mixed precision solution

to obtain lower precision 𝐿̃ and 𝑈̃ factors.

The benchmark requires the solution to be solved by three spe-

cific procedures. First, the matrix is transformed into an estimated

triangular form using a mixed precision block Gaussian elimina-

tion [17]. Once the estimated LU factorization of 𝐴=̃𝐿̃𝑈̃ is obtained,

the estimated solution 𝑥 to 𝐴𝑥 = 𝑏 can be efficiently obtained by

solving the two triangular systems of linear equations (𝐿̃𝑈̃ 𝑥 = 𝑏).
Finally, the solution is further corrected back to FP64 precision

accuracy (𝑏 −𝐴𝑥 < 𝜖) by applying iterative refinement (IR) [18].

2
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Block LU factorization. Block based Gaussian elimination par-

tition a size 𝑛 matrix𝐴 into 𝑛𝑏 ×𝑛𝑏 blocks, each with size 𝑏 ×𝑏 (i.e.,
𝑛𝑏 = 𝑛

𝑏 ). The block size 𝑏 is chosen to balance communication and

computation. Consequently, transforming 𝐴 into its LU factoriza-

tion occurs in blocks, that is, each step of the Gaussian elimination

computes 𝑏 columns of 𝐿 and 𝑏 rows of𝑈 . [5, 16]. The total number

of steps required for a complete LU factorization is 𝑛𝑏 steps. Let

𝐴(𝑘) denote the unfinished matrix at step 𝑘 , and 𝑈0 and 𝐿0 denote
the finalized part of matrix at step 𝑘 , see part (a) of Figure 3

To factor the remaining (𝑁 − 𝑘𝐵 + 𝐵) × (𝑁 − 𝑘𝐵 + 𝐵) submatrix

𝐴(𝑘) as 𝐿 (𝑘)𝑈 (𝑘) , we represent as

𝐴(𝑘) =
[
𝐴1,1 𝐴1,2

𝐴2,1 𝐴2,2

]
,

where 𝐴1,1, 𝐴1,2, 𝐴2,1, and 𝐴2,2 are of sizes 𝐵 × 𝐵, (𝑁 − 𝑘𝐵) × 𝐵,
𝐵 × (𝑁 − 𝑘𝐵), and (𝑁 − 𝑘𝐵) × (𝑁 − 𝑘𝐵), see part (b) of Figure 3.[

𝐴1,1 𝐴1,2

𝐴2,1 𝐴2,2

]
=

[
𝐿1,1 0

𝐿2,1 𝐿2,2

] [
𝑈1,1 𝑈1,2

0 𝑈2,2

]
=

[
𝐿1,1𝑈1,1 𝐿1,1𝑈1,2

𝐿2,1𝑈1,1 𝐿2,1𝑈1,2 + 𝐿2,2𝑈2,2

]
,

Further expanding, LU factorization can be viewed as solving for

𝐿1,1, 𝐿1,2, 𝑈1,1 and 𝑈2,1, then update the 𝐴2,2, see part (c) of Figure

3. The high-level algorithmic steps for block-based LU factorization

at step 𝑘 could be represent as the following:

(1) Gaussian elimination for 𝐴1,1 to find 𝐿1,1 and𝑈1,1;

(2) Compute 𝐿2,1 = 𝐴2,1𝑈
−1
1,1 ;

(3) Compute 𝑈1,2 = 𝐿−1
1,1𝐴1,2;

(4) Compute 𝐴(𝑘+1) = 𝐿2,2𝑈2,2 = 𝐴2,2 − 𝐿2,1𝑈1,2.

Iterative refinement. Even when 𝐴 is well-conditioned, comput-

ing its LU factorization suffers from precision limitations of floating

point arithmetic, especially when working in mixed precision. As a

result, the mixed precision LU factorization 𝐴→ 𝐿̃𝑈̃ holds only an

approximation for the real factorization 𝐿 and𝑈 . Performing IR by

repeating the following steps until the required solution accuracy

is reached:

(1) Compute the residual 𝑟 = 𝑏 −𝐴𝑥 in higher precision;

(2) Find an approximation
˜𝑑 of solution discrepancy 𝑑 = 𝑥 − 𝑥

by solving 𝐿̃𝑈̃ ˜𝑑 = 𝑟
(3) Refine the approximate solution 𝑥 by assigning 𝑥 ← 𝑥 + ˜𝑑 .

The estimate solution 𝑥 is refined closer to 𝑥 every iteration,

given the input was designed to converge. For benchmark purpose

the IR is stopped once the solution discrepancy
˜𝑑 gets below some

ration of FP64 machine epsilon. As this part of the procedures does

not require significant run time we will omitted the detail in our

implementation and discussion.

2.2.1 Related Work. In 2006 Kurzak and Dongarra [12] were

first to introduce the use of mixed precision to solve𝐴𝑥 = 𝑏. In 2010,
Wang et al. offered a GPU-accelerated version of the algorithm

for the first time [13]. Dense linear algebra library ScaLAPACK

[3] which developed in 1992 supported distributed computing. In

2009, MAGMA library [1],[2] enabled the GPU support for BLAS.

In 2017, Haidar et al. added mixed precision variants to MAGMA

[7, 8]. In 2019, a library called SLATE [6] expand the capability to

multiple precision with distributed multi-GPU support. However,

these libraries mainly focused on the portability and usability, and

does not tailored to target the maximum performance of target

system. On the CPU front, the Fugaku HPL-MxP code [11, 15] is

the first to break the exascale barrier in 2020 with a CPU-only

implementation.

The implementation we used and updated in our paper is from

the OLCF [14] and is called OpenMxP, which is the first code that

obtains almost 8 exaflops on the Frontier system. This papers work

is heavily influenced by these prior works, including using the

OpenMxP code as a baseline, but takes it further with communica-

tion optimizations and performance modeling to achieve almost 10

exaflops.

2.3 Block Floyd-Wasrshall
FW uses a dynamic programming approach to computing all-pairs-

shortest path. It initialized the distance of each pair Dist [i,j] to

infinity. It initializes Dist with the input weights𝑊 . Then, in the

𝑘-th iteration, it checks for all pairs of vertices 𝑣𝑖 and 𝑣 𝑗 if there is
a shorter path between them via the intermediate vertex 𝑣𝑘 . If so,
FW updates Dist[𝑖, 𝑗]. Therefore, Dist[𝑖, 𝑗] after 𝑘 steps, which we

denote by Dist
𝑘 (𝑖, 𝑗), may be defined recursively as

Dist
𝑘 [𝑖, 𝑗] ← min

{
Dist

𝑘−1 [𝑖, 𝑗],Dist𝑘−1 [𝑖, 𝑘] + Dist𝑘−1 [𝑘, 𝑗]
}
.

Therefore, at the end of the 𝑛-th iteration Dist
𝑛 [𝑖, 𝑗] will be the

length of the shortest path between 𝑣𝑖 and 𝑣 𝑗 .
Apsp may be understood algebraically as computing the matrix

closure of the weight matrix,𝑊 , defined over the tropical semir-

ing [4]. In more basic terms, let ⊕ and ⊗ denote the two binary

scalar operators

𝑥 ⊕ 𝑦 := min(𝑥,𝑦)
𝑥 ⊗ 𝑦 := 𝑥 + 𝑦,

where 𝑥 and 𝑦 are real values or ∞. Next, consider two matrices

𝐴 ∈ R𝑚×𝑘 and 𝐵 ∈ R𝑘×𝑛 . The Min-Plus product 𝐶 of 𝐴 and 𝐵 is

𝐶𝑖 𝑗 ←
⊕∑
𝑘

𝐴𝑖𝑘 ⊗ 𝐵𝑘 𝑗 = min

𝑘

(
𝐴𝑖𝑘 + 𝐵𝑘 𝑗

)
.

To see its connection to graph path analysis, consider an example

of the complete tripartite graph in ??.
This interpretation of the Min-Plus product helps to understand

the following blocked version of FW (??).

2.3.1 Blocked Flyod-Warshall algorithm. Suppose we divide
Dist into 𝑛𝑏 × 𝑛𝑏 blocks, each of size 𝑏 × 𝑏 (i.e., 𝑛𝑏 = 𝑛

𝑏 ). Let 𝐴𝑖 𝑗
denote the (𝑖, 𝑗) block of 𝐴, where 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑏 . Then a blocked

version of FW, called BlockedFw in ??, can carry out the same

Apsp computation as FW in the following three steps, as illustrated

in ??:
• Diagonal Update: Perform the classic FW algorithm on a

diagonal block, 𝐴𝑘𝑘 .
• Panel Update: Update the 𝑘-th block row and column. For

any block𝐴(𝑘, 𝑗), 𝑗≠𝑘 in the block row, the update is a Min-

Plus multiply with 𝐴𝑘𝑘 from the left, and for block 𝐴(𝑖, 𝑘)
on the 𝑘-th block column is Min-Plus multiply with 𝐴𝑘𝑘
from right,

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Hao & Sao , et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

<latexit sha1_base64="dreXcowYHlwvZfrZG3U6Rs6DB78=">AAACAnicbVC7SgNBFJ2NrxhfUUtBFoMQm7AroumM2FgmYB6QXcPsZDYZMjO7zMwKYdlOf8FWazuxSSH+h6W1P+FsksIkHrhwOOdezuV4ISVSWdaXkVlaXlldy67nNja3tnfyu3sNGUQC4ToKaCBaHpSYEo7riiiKW6HAkHkUN73Bdeo377GQJOC3ahhil8EeJz5BUGnJcTwWX93FxcFJknTyBatkjWEuEntKCpefo9rP4+Go2sl/O90ARQxzhSiUsm1boXJjKBRBFCc5J5I4hGgAe7itKYcMSzce/5yYx1rpmn4g9HBljtW/FzFkUg6ZpzcZVH0576Xif147Un7ZjQkPI4U5mgT5ETVVYKYFmF0iMFJ0qAlEguhfTdSHAiKla5pJ8VjaiT3fwCJpnJbs89JZzSpUymCCLDgAR6AIbHABKuAGVEEdIBCCJ/AMXowH49V4M94nqxljerMPZmB8/AKLqZxF</latexit>

A(k)
<latexit sha1_base64="6LhGdnsSTkH2bWXv+/RV1KKW0pE=">AAAB/nicbVA9SwNBEJ2LXzEajVraLIaAVbgT0ZQBQSwsIpgPSI6wt9lLluzuHbt7QjgC/gZbrdOJrbX/wtJ/4uajMIkPBh7vzTAzL4g508Z1v53MxubW9k52N7e3nz84LBwdN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjdTv/lElWaRfDSjmPoC9yULGcHGSq1OINL7rjvuFopu2Z0BrRNvQYrV/FdSus1Nat3CT6cXkURQaQjHWrc9NzZ+ipVhhNNxrpNoGmMyxH3atlRiQbWfzu4do5JVeiiMlC1p0Ez9O5FiofVIBLZTYDPQq95U/M9rJyas+CmTcWKoJPNFYcKRidD0edRjihLDR5Zgopi9FZEBVpgYG9HSlkBMM/FWE1gnjYuyd1W+fLDhVGCOLJzCGZyDB9dQhTuoQR0IcHiBV3hznp2J8+58zFszzmLmBJbgfP4CPrmY+A==</latexit>

L0

<latexit sha1_base64="FDCWrvCu4UPOmFgABLkktMgkvPc=">AAAB/nicbVDPSwJBFH7bT7Msq2OXIRE6yW5EeRSC6GjQqqCLzI6jDs7MLjOzgSxCf0PXOnuLrp37Lzr2nzSrHlL74MHH973He+8LY860cd1vZ2Nza3tnN7eX3z8oHB4Vj08aOkoUoT6JeKRaIdaUM0l9wwynrVhRLEJOm+HoNvObT1RpFslHM45pIPBAsj4j2Fip1QlF6nfdSbdYcivuDGideAtSqhW+kvJdflrvFn86vYgkgkpDONa67bmxCVKsDCOcTvKdRNMYkxEe0LalEguqg3R27wSVrdJD/UjZkgbN1L8TKRZaj0VoOwU2Q73qZeJ/Xjsx/WqQMhknhkoyX9RPODIRyp5HPaYoMXxsCSaK2VsRGWKFibERLW0JRZaJt5rAOmlcVrzrytWDDacKc+TgDM7hAjy4gRrcQx18IMDhBV7hzXl2ps678zFv3XAWM6ewBOfzF0z/mQE=</latexit>

U0

(a)

<latexit sha1_base64="FDCWrvCu4UPOmFgABLkktMgkvPc=">AAAB/nicbVDPSwJBFH7bT7Msq2OXIRE6yW5EeRSC6GjQqqCLzI6jDs7MLjOzgSxCf0PXOnuLrp37Lzr2nzSrHlL74MHH973He+8LY860cd1vZ2Nza3tnN7eX3z8oHB4Vj08aOkoUoT6JeKRaIdaUM0l9wwynrVhRLEJOm+HoNvObT1RpFslHM45pIPBAsj4j2Fip1QlF6nfdSbdYcivuDGideAtSqhW+kvJdflrvFn86vYgkgkpDONa67bmxCVKsDCOcTvKdRNMYkxEe0LalEguqg3R27wSVrdJD/UjZkgbN1L8TKRZaj0VoOwU2Q73qZeJ/Xjsx/WqQMhknhkoyX9RPODIRyp5HPaYoMXxsCSaK2VsRGWKFibERLW0JRZaJt5rAOmlcVrzrytWDDacKc+TgDM7hAjy4gRrcQx18IMDhBV7hzXl2ps678zFv3XAWM6ewBOfzF0z/mQE=</latexit>

U0

<latexit sha1_base64="6LhGdnsSTkH2bWXv+/RV1KKW0pE=">AAAB/nicbVA9SwNBEJ2LXzEajVraLIaAVbgT0ZQBQSwsIpgPSI6wt9lLluzuHbt7QjgC/gZbrdOJrbX/wtJ/4uajMIkPBh7vzTAzL4g508Z1v53MxubW9k52N7e3nz84LBwdN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjdTv/lElWaRfDSjmPoC9yULGcHGSq1OINL7rjvuFopu2Z0BrRNvQYrV/FdSus1Nat3CT6cXkURQaQjHWrc9NzZ+ipVhhNNxrpNoGmMyxH3atlRiQbWfzu4do5JVeiiMlC1p0Ez9O5FiofVIBLZTYDPQq95U/M9rJyas+CmTcWKoJPNFYcKRidD0edRjihLDR5Zgopi9FZEBVpgYG9HSlkBMM/FWE1gnjYuyd1W+fLDhVGCOLJzCGZyDB9dQhTuoQR0IcHiBV3hznp2J8+58zFszzmLmBJbgfP4CPrmY+A==</latexit>

L0

<latexit sha1_base64="fVUXIpDLIma7vjZUkpaL1/EDR18=">AAACAXicbVC7SgNBFJ31GaPRqKXNYAhYhd0gmjIiiGUE84DNEmYnk2TIPJaZWSEsW/kNttoJdmJr519Y+ifOJilM4oELh3Pu5d57wohRbVz321lb39jc2s7t5Hf3CvsHxcOjlpaxwqSJJZOqEyJNGBWkaahhpBMpgnjISDscX2d++4EoTaW4N5OIBBwNBR1QjIyV/G7Ik6te4lXTtFcsuRV3CrhKvDkp1Qtfcfkm/9roFX+6fYljToTBDGnte25kggQpQzEjab4baxIhPEZD4lsqECc6SKYnp7BslT4cSGVLGDhV/04kiGs94aHt5MiM9LKXif95fmwGtSChIooNEXi2aBAzaCTM/od9qgg2bGIJworaWyEeIYWwsSktbAl5lom3nMAqaVUr3kXl/M6GUwMz5MAJOAVnwAOXoA5uQQM0AQYSPIFn8OI8Om/Ou/Mxa11z5jPHYAHO5y99IZo2</latexit>

A12

<latexit sha1_base64="mUjFqWKXgdjvY2C5VArqzAXQ1mQ=">AAACAXicbVC7SgNBFJ2NrxiNRi1tBkPAKuyKaMqIIJYRzAM2S5idzCZD5rHMzAph2cpvsNVOsBNbO//C0j9x8ihM4oELh3Pu5d57wphRbVz328mtrW9sbuW3Czu7xb390sFhS8tEYdLEkknVCZEmjArSNNQw0okVQTxkpB2Orid++4EoTaW4N+OYBBwNBI0oRsZKfjfk6VUv9bws65XKbtWdAq4Sb07K9eJXUrkpvDZ6pZ9uX+KEE2EwQ1r7nhubIEXKUMxIVugmmsQIj9CA+JYKxIkO0unJGaxYpQ8jqWwJA6fq34kUca3HPLSdHJmhXvYm4n+en5ioFqRUxIkhAs8WRQmDRsLJ/7BPFcGGjS1BWFF7K8RDpBA2NqWFLSGfZOItJ7BKWmdV76J6fmfDqYEZ8uAYnIBT4IFLUAe3oAGaAAMJnsAzeHEenTfn3fmYteac+cwRWIDz+Qt7jJo1</latexit>

A11

<latexit sha1_base64="IvaudJX01x3hQit7DWMAGjLKP8E=">AAACAXicbVC7SgNBFJ31GaPRqKXNYAhYhd0gmjIiiGUE84DNEmYnk2TIPJaZWSEsW/kNttoJdmJr519Y+ifOJilM4oELh3Pu5d57wohRbVz321lb39jc2s7t5Hf3CvsHxcOjlpaxwqSJJZOqEyJNGBWkaahhpBMpgnjISDscX2d++4EoTaW4N5OIBBwNBR1QjIyV/G7Ik6teUvXStFcsuRV3CrhKvDkp1Qtfcfkm/9roFX+6fYljToTBDGnte25kggQpQzEjab4baxIhPEZD4lsqECc6SKYnp7BslT4cSGVLGDhV/04kiGs94aHt5MiM9LKXif95fmwGtSChIooNEXi2aBAzaCTM/od9qgg2bGIJworaWyEeIYWwsSktbAl5lom3nMAqaVUr3kXl/M6GUwMz5MAJOAVnwAOXoA5uQQM0AQYSPIFn8OI8Om/Ou/Mxa11z5jPHYAHO5y99Ipo2</latexit>

A21

<latexit sha1_base64="IQJB0Fnc9HJ038cis6DK8HGzc68=">AAACAXicbVC7SgNBFJ31GaPRqKXNYAhYhd0gmjIiiGUE84DNEmYnk2TIPJaZWSEsW/kNttoJdmJr519Y+ifOJilM4oELh3Pu5d57wohRbVz321lb39jc2s7t5Hf3CvsHxcOjlpaxwqSJJZOqEyJNGBWkaahhpBMpgnjISDscX2d++4EoTaW4N5OIBBwNBR1QjIyV/G7Ik6teUq2maa9YcivuFHCVeHNSqhe+4vJN/rXRK/50+xLHnAiDGdLa99zIBAlShmJG0nw31iRCeIyGxLdUIE50kExPTmHZKn04kMqWMHCq/p1IENd6wkPbyZEZ6WUvE//z/NgMakFCRRQbIvBs0SBm0EiY/Q/7VBFs2MQShBW1t0I8QgphY1Na2BLyLBNvOYFV0qpWvIvK+Z0NpwZmyIETcArOgAcuQR3cggZoAgwkeALP4MV5dN6cd+dj1rrmzGeOwQKcz19+t5o3</latexit>

A22

(b)

<latexit sha1_base64="6LhGdnsSTkH2bWXv+/RV1KKW0pE=">AAAB/nicbVA9SwNBEJ2LXzEajVraLIaAVbgT0ZQBQSwsIpgPSI6wt9lLluzuHbt7QjgC/gZbrdOJrbX/wtJ/4uajMIkPBh7vzTAzL4g508Z1v53MxubW9k52N7e3nz84LBwdN3SUKELrJOKRagVYU84krRtmOG3FimIRcNoMhjdTv/lElWaRfDSjmPoC9yULGcHGSq1OINL7rjvuFopu2Z0BrRNvQYrV/FdSus1Nat3CT6cXkURQaQjHWrc9NzZ+ipVhhNNxrpNoGmMyxH3atlRiQbWfzu4do5JVeiiMlC1p0Ez9O5FiofVIBLZTYDPQq95U/M9rJyas+CmTcWKoJPNFYcKRidD0edRjihLDR5Zgopi9FZEBVpgYG9HSlkBMM/FWE1gnjYuyd1W+fLDhVGCOLJzCGZyDB9dQhTuoQR0IcHiBV3hznp2J8+58zFszzmLmBJbgfP4CPrmY+A==</latexit>

L0

<latexit sha1_base64="FDCWrvCu4UPOmFgABLkktMgkvPc=">AAAB/nicbVDPSwJBFH7bT7Msq2OXIRE6yW5EeRSC6GjQqqCLzI6jDs7MLjOzgSxCf0PXOnuLrp37Lzr2nzSrHlL74MHH973He+8LY860cd1vZ2Nza3tnN7eX3z8oHB4Vj08aOkoUoT6JeKRaIdaUM0l9wwynrVhRLEJOm+HoNvObT1RpFslHM45pIPBAsj4j2Fip1QlF6nfdSbdYcivuDGideAtSqhW+kvJdflrvFn86vYgkgkpDONa67bmxCVKsDCOcTvKdRNMYkxEe0LalEguqg3R27wSVrdJD/UjZkgbN1L8TKRZaj0VoOwU2Q73qZeJ/Xjsx/WqQMhknhkoyX9RPODIRyp5HPaYoMXxsCSaK2VsRGWKFibERLW0JRZaJt5rAOmlcVrzrytWDDacKc+TgDM7hAjy4gRrcQx18IMDhBV7hzXl2ps678zFv3XAWM6ewBOfzF0z/mQE=</latexit>

U0

<latexit sha1_base64="WtOPE+NHlkgaYpiS+mW9HW3eMYo=">AAACAXicbVDLSsNAFJ34qLW+qi7dBIvgqiRF1GXBjcsWTFtIQ5lMJ+3QeYSZiVBCVn6BC13qUtyJW//APxBX/omTtgvbeuDC4Zx7ufeeMKZEacf5slZW19YLG8XN0tb2zu5eef+gpUQiEfaQoEJ2QqgwJRx7mmiKO7HEkIUUt8PRVe63b7FURPAbPY5xwOCAk4ggqI3kd0OWer3UrWVZr1xxqs4E9jJxZ6RSLzS/Px/vXxq98k+3L1DCMNeIQqV814l1kEKpCaI4K3UThWOIRnCAfUM5ZFgF6eTkzD4xSt+OhDTFtT1R/06kkCk1ZqHpZFAP1aKXi/95fqKjyyAlPE405mi6KEqorYWd/2/3icRI07EhEElibrXREEqItElpbkvI8kzcxQSWSatWdc+rZ00TTg1MUQRH4BicAhdcgDq4Bg3gAQQEeABP4Nm6s16tN+t92rpizWYOwRysj1+WgJuv</latexit>

U12

<latexit sha1_base64="+UmT6HVQxuwZuLY+crn6T4Zlbgg=">AAACAXicbVC7SgNBFJ2NGmN8RS1tBoNgFXaDqGXAxsIiAfOAzRJmJ7PJkJnZZWZWCMtWfoGFllqKndj6B/6BWPknziYpTOKBC4dz7uXee/yIUaVt+8vKrayu5dcLG8XNre2d3dLefkuFscSkiUMWyo6PFGFUkKammpFOJAniPiNtf3SZ+e1bIhUNxY0eR8TjaCBoQDHSRnK7Pk+ue0m1mqa9Utmu2BPAZeLMSLmWb3x/Pt6/1Huln24/xDEnQmOGlHIdO9JegqSmmJG02I0ViRAeoQFxDRWIE+Ulk5NTeGyUPgxCaUpoOFH/TiSIKzXmvunkSA/VopeJ/3lurIMLL6EiijUReLooiBnUIcz+h30qCdZsbAjCkppbIR4iibA2Kc1t8XmWibOYwDJpVSvOWeW0YcKpgikK4BAcgRPggHNQA1egDpoAgxA8gCfwbN1Zr9ab9T5tzVmzmQMwB+vjF4m1m6c=</latexit>

L22

<latexit sha1_base64="Yo0MLuLmlQJhf2HEy1YQuSWYTqo=">AAACAXicbVC7SgNBFJ2NGmN8RS1tBoNgFXaDqGXAxsIiAfOAzRJmJ7PJkJnZZWZWCMtWfoGFllqKndj6B/6BWPknziYpTOKBC4dz7uXee/yIUaVt+8vKrayu5dcLG8XNre2d3dLefkuFscSkiUMWyo6PFGFUkKammpFOJAniPiNtf3SZ+e1bIhUNxY0eR8TjaCBoQDHSRnK7Pk+ue4njpGmvVLYr9gRwmTgzUq7lG9+fj/cv9V7pp9sPccyJ0JghpVzHjrSXIKkpZiQtdmNFIoRHaEBcQwXiRHnJ5OQUHhulD4NQmhIaTtS/EwniSo25bzo50kO16GXif54b6+DCS6iIYk0Eni4KYgZ1CLP/YZ9KgjUbG4KwpOZWiIdIIqxNSnNbfJ5l4iwmsExa1YpzVjltmHCqYIoCOARH4AQ44BzUwBWogybAIAQP4Ak8W3fWq/VmvU9bc9Zs5gDMwfr4BYaKm6U=</latexit>

L11

<latexit sha1_base64="yhsdbwupUHNS2pNDZ+eMVmDJG60=">AAACAXicbVDLSsNAFJ34qLW+qi7dBIvgqiRF1GXBjcsWTFtIQ5lMJ+3QeYSZiVBCVn6BC13qUtyJW//APxBX/omTtgvbeuDC4Zx7ufeeMKZEacf5slZW19YLG8XN0tb2zu5eef+gpUQiEfaQoEJ2QqgwJRx7mmiKO7HEkIUUt8PRVe63b7FURPAbPY5xwOCAk4ggqI3kd0OWer3UdbOsV644VWcCe5m4M1KpF5rfn4/3L41e+afbFyhhmGtEoVK+68Q6SKHUBFGclbqJwjFEIzjAvqEcMqyCdHJyZp8YpW9HQpri2p6ofydSyJQas9B0MqiHatHLxf88P9HRZZASHicaczRdFCXU1sLO/7f7RGKk6dgQiCQxt9poCCVE2qQ0tyVkeSbuYgLLpFWruufVs6YJpwamKIIjcAxOgQsuQB1cgwbwAAICPIAn8GzdWa/Wm/U+bV2xZjOHYA7Wxy+U65uu</latexit>

U11

<latexit sha1_base64="XwzHPrnwweq/1WhVofTj6ztBCp4=">AAACBHicbVDLSgMxFM34rOOr6tJNsAgVocwUUTdixY3LCvYB7bRk0rQNTTJDkhHKMFu/wa26dSfizt8Ql/6JmbYL23rgwuGcezmX44eMKu0439bC4tLyympmzV7f2Nzazu7sVlUQSUwqOGCBrPtIEUYFqWiqGamHkiDuM1LzB9epX7snUtFA3OlhSDyOeoJ2KUbaSK2mz+OrVpwfHLtHSdLO5pyCMwKcJ+6E5C4/7Ivw5csut7M/zU6AI06Exgwp1XCdUHsxkppiRhK7GSkSIjxAPdIwVCBOlBePvk7goVE6sBtIM0LDkfr3IkZcqSH3zSZHuq9mvVT8z2tEunvuxVSEkSYCj4O6EYM6gGkFsEMlwZoNDUFYUvMrxH0kEdamqKkUn6eduLMNzJNqseCeFk5unVypCMbIgH1wAPLABWegBG5AGVQABhI8gifwbD1Yr9ab9T5eXbAmN3tgCtbnL96xm5Q=</latexit>

A(k+1)

(c)

Figure 3: The 𝑘th step of block LU factorization. (a) The lay-
out right before the 𝑘th step. (b) Partitioning of the trailing
matrix. (c) The outcome of the 𝑘th step.

2.4 2D Block-cyclic data distribution
The 2D block-cyclic data distribution scheme divides a matrix, like

a matrix 𝐴, into blocks denoted as (𝑖, 𝑗). Each block represents a

submatrix 𝐴[𝑖𝑏 : (𝑖 + 1)𝑏, 𝑗𝑏 : ( 𝑗 + 1)𝑏] with a block size 𝑏. This
scheme is useful when the block size is uneven, as in sparse direct

solvers. Blocks (𝑖, 𝑗) are assigned to specific processes based on row

and column indices 𝑃𝑟 (𝑖) and 𝑃𝑐 ( 𝑗).
This distribution scheme has several advantages. Firstly, it en-

sures data ownership, meaning the process responsible for a subma-

trix is always known. This guarantees precise knowledge of where

the data resides. Secondly, the owner update policy ensures that the

latest copy of a block is with the corresponding process. Therefore,

only the owner process updates the block, eliminating the need for

coordination among multiple processes.

Load balancing is achieved through fine-grained blocked parti-

tioning, which mitigates imbalances when updating matrix parts.

Random submatrices of 𝐴 are usually equally distributed among

processes, enabling arbitrary grid dimensions and efficient compu-

tations across the distributed system.

Communication within process rows and columns is vital in

this scheme. Most communication occurs between processes in the

same row or column, minimizing overhead and promoting efficient

data exchanges.

While block-cyclic distribution offers significant benefits, it is

important to consider alternative data distribution strategies. These

include 2D data distribution without block-cyclic characteristics,

global arrays (PGAS), and tiled block-cyclic distribution. In contrast

to 2D data distribution, the PGAS (PartitionedGlobal Address Space)

model provides a shared memory-like programming model while

leveraging the distributed memory architecture. This approach is

supported by languages such as Unified Parallel C (UPC), Co-Array

Fortran (CAF), and Chapel. PGAS is particularly useful when dy-

namic load balancing is required. Each alternative differs in how

the local submatrix is stored locally, introducing variations in com-

munication patterns and load-balancing strategies. add citations
to models and Xing’s paper

2.5 Distributed Implementation
For distributed version of HPL-MxP and FW algorithm, we par-

tition the global matrix 𝐴 into 2D Block-cyclic data distribution

described in section 2.4. Follow the numerical steps in section 2.2 for

HPL-MxP, we used accelerator specific BLAS (Basic Linear Subpro-

grams). The kernels we used are SGETRF_nopivot (FP32), STRSM

(FP32) and GEMM_ex (FP16), with additional native implemented

casting kernels for precision changes. Pseudo code is provided in

Algorithm 1

Algorithm 1 Distributed GPU mixed Precision LU

1: Input: 𝑁, 𝐵, 𝑃𝑟 , 𝑃𝑐
2: Fill global matrix 𝐴 with random numbers.

(1) Block LU factorization
3: On each MPI process 𝑝𝑖𝑑 do in parallel:
4: for 𝑘 = 1, 2, 3 . . . 𝑛𝑏 do
5: Synchronize all processes

6: 𝑃𝑖𝑟 , 𝑃𝑖𝑐 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑘) // 𝐴𝑘,𝑘 owner process index

(1a) Diagonal Update
7: if 𝑝𝑖𝑑 == 𝑃 (𝑃𝑖𝑟 , 𝑃𝑖𝑐 ) then
8: 𝐴(𝑘, 𝑘) ← GETRF (𝐴(𝑘, 𝑘))
9: Broadcast 𝐴(𝑘, 𝑘) to 𝑃 (𝑃𝑖𝑟 , :) and 𝑃 (:, 𝑃𝑖𝑐 )

(1b) Panel Update
10: if 𝑝𝑖𝑑 ∈ 𝑃 (𝑃𝑖𝑟 , :) then
11: Receive 𝐴(𝑘, 𝑘)
12: 𝐴(𝑘, 𝑘 + 1 : 𝑛) ←
13: TRSM_L_LOW (𝐴(𝑘, 𝑘), 𝐴(𝑘, 𝑘 + 1 : 𝑛))
14: 𝑈 ← TRANS_CAST (𝐴(𝑘, 𝑘 + 1 : 𝑛))
15: Broadcast𝑈 to processes in 𝑃 (:, 𝑝𝑖𝑐 )
16: else
17: Receive𝑈
18: if 𝑝𝑖𝑑 ∈ 𝑃 (:, 𝑃𝑖𝑐 ) then
19: Receive 𝐴(𝑘, 𝑘)
20: 𝐴(𝑘 + 1 : 𝑛,𝑘) ←
21: TRSM_R_UP (𝐴(𝑘, 𝑘), 𝐴(𝑘 + 1 : 𝑛,𝑘))
22: 𝐿 ← CAST (𝐴(𝑘 + 1 : 𝑛,𝑘))
23: Broadcast 𝐿 to processes in 𝑃 (𝑝𝑖𝑟 , :)
24: else
25: Receive 𝐿

(1c) Update Trailing Matrix
26: 𝐴(𝑘 + 1 : 𝑛,𝑘 + 1 : 𝑛) ← GEMM (𝐿,𝑈 ,𝐴(𝑘 + 1 : 𝑛,𝑘 + 1 : 𝑛))

For distributed FW, we implemented the required SEMIRING-

GEMM kenerl. Pseudo code is provided in Algorithm 2

3 IMPLEMENTATION AND OPTIMIZATION
3.1 Overlapping Communication with

Computation
Add citations for look ahead schemeOne crucial strategy to en-
hance performance in distributed computing systems is to overlap

communication with computation. This is achieved by the HPL-

MxP and Dist-FW algorithms using a look-ahead optimization. This

method breaks down operations into smaller, manageable compo-

nents. It allows the system to rank computation and communication

tasks based on cost, facilitating simultaneous execution of compu-

tations even while waiting for data from other nodes.

Unlike the traditional bulk-synchronous structure, look-ahead

optimization doesn’t force processes to stall until each node finishes

its current task. Instead, it allows the next computation or com-

munication step to proceed. This technique, known as pipelining,

enables overlapping communications between different stages of a

calculation without requiring each process to wait for others.

This approach reduces idle time, where no work is done, and

boosts efficiency by using resources more effectively. In summary,
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Algorithm 2 Parallel Floyd-Warshall algorithm on 2D process grid

1: function ParallelFW(𝐴, 𝑃 = 𝑃𝑟 × 𝑃𝑐 ) ⊲ 𝐴 is distributed in

block-cyclic fashion ⊲ my process Id is 𝑝𝑖𝑑
2: for all MPI process 𝑝𝑖𝑑 in parallel do
3: for 𝑘 ∈ {1, 2, . . . , 𝑛𝑏 } do
4: if 𝑝𝑖𝑑 = 𝑝𝑘,𝑘 then
5: 𝐴(𝑘, 𝑘) ← Floyd-Warshall(𝐴(𝑘, 𝑘))
6: Broadcast(𝐴(𝑘, 𝑘), 𝑃𝑟 (𝑘))
7: Broadcast(𝐴(𝑘, 𝑘), 𝑃𝑐 (𝑘))
8: if 𝑝𝑖𝑑 ∈ 𝑃𝑟 (𝑘) then
9: Receive(𝐴(𝑘, 𝑘), 𝑝𝑘,𝑘 )
10: 𝐴(𝑘, :) ← 𝐴(𝑘, :) ⊕ 𝐴(𝑘, 𝑘) ⊗ 𝐴(𝑘, :)
11: Broadcast(𝐴(𝑘, :), 𝑃𝑐 (𝑝𝑖𝑑))
12: else
13: Receive(𝐴(𝑘, :))
14: if 𝑝𝑖𝑑 ∈ 𝑃𝑐 (𝑐) then
15: Receive(𝐴(𝑘, 𝑘), 𝑝𝑘,𝑘 )
16: 𝐴(:, 𝑘) ← 𝐴(:, 𝑘) ⊕ 𝐴(:, 𝑘) ⊗ 𝐴(𝑘, 𝑘)
17: Broadcast(𝐴(:, 𝑘), 𝑃𝑟 (𝑝𝑖𝑑))
18: else
19: Receive(𝐴(𝑘, :))
20: for 𝑖 ∈ {1, 2, . . . , 𝑛𝑏 } do
21: for 𝑗 ∈ {1, 2, . . . , 𝑛𝑏 } do
22: if 𝑝𝑖𝑑 owns 𝐴(𝑖, 𝑗) then
23: 𝐴(𝑖, 𝑗) ← 𝐴(𝑖, 𝑗) ⊕ 𝐴(𝑖, 𝑘) ⊗ 𝐴(𝑘, 𝑗)

overlapping communication with computation via look-ahead opti-

mization minimizes delays and maximizes resource use, leading to

improved performance in distributed computing systems.

3.2 Mapping 2D Partitioned Algorithm to
Architecture

We must effectively adapt the computation to the architecture to

enhance performance in distributed computing systems. We can

optimize this in two ways: by increasing bandwidth and reducing la-

tency. The former strives to boost data transfer between nodes over

time. This requires a clear grasp of network topology constraints,

communication protocols, and hardware limitations specific to the

application. On the other hand, reducing latency aims to cut data

travel time between nodes, which also demands a thorough knowl-

edge of network topology and hardware constraints.

Proposed models like fat-tree and torus networks can ease band-

width usage during inter-node communication. These models pro-

vide multiple paths with varying connectivity degrees based on

node proximity within the network. Overlapping computation opti-

mization depends on several factors, including available resources

such as network adapters, the employed communication protocols

(TCP/IP or RDMA), and network topology constraints (fat-tree,

torus, dragonfly, etc). These factors demand careful thought when

designing an efficient distributed computing system.

While reducing bandwidth requirements or optimizing architec-

tural mapping to increase bandwidth is generally possible, latency

optimization is more challenging with fewer techniques available.

Fortunately, latency is normally less critical in dense matrix op-

erations. Although this paper doesn’t primarily focus on latency

optimization, we discuss situations where such optimizations might

be beneficial and how the Message Passing Interface (MPI) can aid

these efforts.

3.2.1 Choosing Grid dimensions. Contrary to popular belief,

a square process grid (i.e., 𝑃𝑟 = 𝑃𝑐 ) doesn’t necessarily minimize

communication costs as it often overlooks the network architecture.

For instance, while 𝑃𝑟 = 𝑃𝑐 reduces total communication for each

process, it fails to distinguish between data transferred to a different

node, and data exchanged within the same node, neglecting the

significant differences in bandwidth and latency.

To decrease communication time, we should focus on the slowest

link used by the application, often the network interface card (NIC),

when not using IO or NVM. By mapping computation to architec-

ture, we can optimize the NIC usage and maximize bandwidth. This

involves identifying the data sent via each NIC and optimizing its

transmission.

Consider MPI processes arranged in a 2D grid of dimension

𝑃𝑟 × 𝑃𝑐 . If a subset of processes 𝑄 share a single NIC, we can

arrange them in a logical grid𝑄𝑟 ×𝑄𝑐 , resulting in a logical 2D grid

arrangement of NIC with dimensions 𝐾𝑟 × 𝐾𝑐 where 𝐾𝑟 = 𝑃𝑟 /𝑄𝑟

and 𝐾𝑐 = 𝑃𝑐/𝑄𝑐 . We aim for 𝐾𝑟 ≈ 𝐾𝑐 to minimize data transfer

through the NIC.

In practice, we usually assign ranks in a specific manner to

achieve this configuration. For example, we use an explicit resource

file on the Summit supercomputer to determine where each rank

resides. In MPICH, we can set this by using:

MPICH_RANK_REORDER_METHOD=3
and creating a file:

MPICH_RANK_REORDER.grid
that contains a list of ranks in the 𝑖-node in its 𝑖-th line. The

default method of assigning rank can lead to poor performance

as all the ranks on the node are consecutive, often resulting in an

unbalanced grid structure when partitioning into a 2D grid.

In Figure 4, we present a logical representation of 𝑄𝑟 (𝑃) and
𝑄𝑐 (𝑄) for six nodes in both the default and optimized configura-

tions. In the default scenario, each Network Interface Card (NIC)

transfers data at a cost of 2𝑛2, indicating high communication over-

head. However, in the optimized scenario with more effective node

arrangements, the communication cost decreases to 5𝑛2/3. This
demonstrates that adjusting the grid structure and rank distribution

can significantly reduce communication overhead and improve NIC

bandwidth utilization.

On the other hand, Figure 5 highlights the advantages of differ-

ent combinations of 𝑄𝑟 and 𝑄𝑐 in terms of effective bandwidth. It

provides insights into how adjusting these parameters affects the

effective bandwidth and allows us to identify the optimal configura-

tion for maximizing this metric. This figure emphasizes the impor-

tance of carefully mapping computation to architecture through

rank distribution and grid arrangement, leading to substantial im-

provements in communication efficiency.

• Fig 4 Logically Describe the qr(P) qc(Q) that reduce the inter-
node message

• Fig 5 show case the benefit of qr qc in terms of actual mea-

surement of bandwidth
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Figure 4: Example of different node local grid, and the met-
ric that impact the communication time.
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Figure 5: Summit Example of different node local grid, and
the metric that impact the communication time.

3.3 Optimizing Broadcast Operations
In the HPL-AI and Dist-FW algorithms, we need to perform broad-

casts across process rows and columns in each iteration. The broad-

cast source shifts one step per iteration to ensure all processes have

updated data. For example, process 𝑃𝑟 (𝑘) handles the broadcast in
the 𝑘-th iteration, and in the subsequent iteration (𝑘+1), process
𝑃𝑟 (𝑘 + 1) takes over this task. The same pattern applies to column

communication operations.

Tree-based broadcast algorithms, such as binary trees and Fi-

bonacci trees, are commonly used in distributed computing systems

Binding Grid Tuning

Figure 6: Summit HPL-MxP architecture features, 2916 GCD,
LN=61440,b=768

Grid TuningGPU Aware

Figure 7: FrontierHPL-MxP architecture features, 1024GCD,
LN=119808,b=3072

to achieve efficient data communication among nodes. However,

for 2D partitioned matrix applications like HPL-AI and Dist-FW

algorithms, the ring family of broadcasts may outperform tree-

based broadcasts as it aligns well with the communication pattern.

The ring family of broadcast algorithms offers various variants,

including modified and bidirectional rings (two-directional). The

selection of the appropriate broadcasting algorithm depends on

the constraints of the network topology and specific performance

requirements, such as reducing latency or optimizing bandwidth

utilization.
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Figure 8: Different Variant of Ring Broadcast used in our
experimentation

Algorithm 3 Chunked Broadcast Algorithm

1: procedure ChunkedBroadcast
Require: 𝐶𝑆𝑖𝑧𝑒 , 𝑃𝑟 , 𝑃𝑐 , 𝑅𝑟 , 𝑅𝑐 , 𝑁𝑟 , 𝑁𝑐 , 𝐵𝑢𝑓𝑟 , 𝐵𝑢𝑓𝑐 , ⊲ Variables:

Chunk Size, Process row/column communicator, Row/Column

root, Number of chunks for row/column broadcast, Buffer for

row/column broadcast

2: 𝑖𝑟 = 0, 𝑗𝑐 = 0

3: for each process (𝑝𝑥, 𝑝𝑦) in parallel do
4: if I am in the root row then
5: for 𝑖 ← 0 to 𝑁𝑟 − 1 do
6: relay(𝑃𝑟 , 𝑅𝑟 , 𝐵𝑢𝑓𝑟 [𝑖])
7: 𝑖𝑟 ← 𝑁𝑟

8: if I am in the root column then
9: for 𝑗 ← 0 to 𝑁𝑐 − 1 do
10: relay(𝑃𝑐 , 𝑅𝑐 , 𝐵𝑢𝑓𝑐 [ 𝑗])
11: 𝑗𝑐 ← 𝑁𝑐
12: while 𝑖𝑟 ≠ 𝑁𝑟 or 𝑗𝑐 ≠ 𝑁𝑐 do
13: if 𝑖𝑟 ≠ 𝑁𝑟 then
14: check receive(𝑖𝑟 )
15: if received then
16: relay(𝑖𝑟 )
17: 𝑖𝑟 ← 𝑖𝑟 + 1
18: if 𝑗𝑐 ≠ 𝑁𝑐 then
19: check receive( 𝑗𝑐 )
20: if received then
21: relay( 𝑗𝑐 )
22: 𝑗𝑐 ← 𝑗𝑐 + 1
23: end procedure

3.3.1 A modified 2D broadcast. Besides the tree broadcast and
ring broadcast, there is another version of the broadcast which is

essentially a modified version of the ring broadcast. It modifies it

in two ways: combining the two broadcasts and breaking down

the message into smaller parts. The idea behind this broadcast is to

avoid high latency costs associated with string broadcasts. Breaking

the message into smaller parts allows us to pipeline the broadcast

and transmit each chunk individually. Additionally, this modified

broadcast merges both the process row and column broadcasts.

To achieve this merge, we track which chunk is transmitted for

each row and column at every step of the combined broadcast. We

wait for messages to be received before incrementing pointers.

This broadcast implementation performs the best in all cases and

has an added advantage. It is much more resilient to unexpected net-

work behavior that we observed during testing. In some instances,

certain network links would completely fail for specific messages.

We found that this modified version of the broadcast could with-

stand such deviations more gracefully than other versions. While

we do not clearly understand why the faults occurs and why this

broadcast algorithm shows resilient behavior, it is an area worth

investigating in the future.

3.3.2 Discussion of various experiments. The results and

data presented bring into focus the varying efficiencies of different

broadcast algorithms in the context of HPL-AI and Dist-FW algo-

rithms. A broad range of communication patterns and their effects

on workloads were studied, focusing on the first 1200 iterations

in the case of the APSP workload (Fig 9). It was observed that the

2RM-Pipelined version of the ring broadcast, wherein the message

is broken down into chunks, outperformed most other communi-

cation methods. This suggests that the pipelining technique is an

effective way to mitigate the high latency costs typically associated

with broadcasts.

However, this is not the only communicationmethod that showed

promise. In the HPL-MXP workload, the 1ring chunked method

was the standout, as shown in Fig 10. This variant seemed to work

in harmony with the decreasing workload of HPL-MXP over the

iterations, and it outperformed the other ring implementations.

A key finding from these experiments was the remarkable effect

of incorporating OpenMP to alleviate congestion during 2D grid

communication (Fig 11). The simultaneous arrival of two messages

often leads to congestion, and effectively handling this scenario

can result in significant communication time reduction. The use of

OpenMP proved to be an effective solution, further reducing com-

munication time and enhancing the performance of the broadcast

algorithm.

The effect of different chunk sizes on the communicationwas also

investigated (Fig 12). Surprisingly, a chunk size of 2 MB appeared to

outperform other sizes. This provides valuable insights for future

broadcast implementations, suggesting an optimal chunk size for

minimizing latency and maximizing efficiency.

Finally, a noteworthy pattern emerged when evaluating the aver-

age bandwidth across different data sizes during an HPL-MXP run

(Fig 13). As the number of nodes doubled, the average bandwidth

remained 95-98%. This indicates that the ring broadcast algorithms,

specifically the chunked versions, are efficient not just in terms of

latency but also in terms of bandwidth utilization.

Overall, these results highlight the potential of the ring family

of broadcast algorithms, specifically their modified versions, for 2D

partitioned matrix applications like HPL-AI and Dist-FW. The use

of pipelining and chunking techniques and the incorporation of

multi-threading solutions like OpenMP seem to offer a robust ap-

proach to improving communication efficiency in such distributed

7
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computing systems. Future studies should further investigate the

resilient behavior of these modified broadcasts, especially in the

face of unpredictable network behavior.

• Fig 9 Show case different communication effect on APSP

workload for the first 1200 iterations, workload remain the

same throughout the run. 2RM-Pipelined (2ringM chunked),

recorded in the yellow line, was outperformancing most

other communication. (we dont have 1rC data)

• Fig ?? ALL type of ring data for hpl-mxp, want to remove.

• Fig 10 show case the basic implementation of all the different

ring for hpl-mxp workload for first 3000 iterations. Clearly

see the 1ring chunked outperform the rest of ring, recorded

in the read line. Note the workload of hpl-mxp decrease as

the iteration pass through

• Fig 11 show case the hpl-mxp ring improvement using open-

mp to resolve the congestion happens during the 2D grid

communication, where 2 message come in the same time.

Openmp further reduce the communication time, recorded

in the yellow line

• Fig 12 Compare the effect of different chunk size, 4MB seem

to outperform, recorded in the blue line.

• Fig 13 Average bandwidth on different size of data during

hpl-mxp run. The last label is the average bandwidth across

all size we recorded. We observe a 95-98% reduction of band-

width as we double the nodes.
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4 PERFORMANCE MODEL
4.1 Motivation
4.2 Hyper Model
4.3 Application Performance Modeling
When we work with parallel applications, we often face the chal-

lenge ofmaking accurate performance predictions.We need amodel
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that can handle all sorts of situations, not just when our problem pa-

rameters are large. Traditional models, called ‘asymptotic models’,

struggle when problem sizes per process become small as the num-

ber of processes increases. So, we turn to a more flexible solution:

hyperbolic performance models.

Let’s simplify this complex term. A hyperbolic performance

model is just a function, 𝑦 = 𝑓 (𝑥), which draws a hyperbola shape

when plotted on a graph. Here, 𝑦 is the performance we want to

predict, and 𝑥 is the problem parameter. We write this function as:

𝑦 := 𝑓 (𝜂) = 𝑎𝜂

𝜂 + 𝑑 𝑎, 𝑎𝑑 ≠ 0.
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where 𝜂 is a performance parameter, and 𝑎 and 𝑑 are constants

we need to determine.

Now, we need a way to estimate the values of 𝑎 and 𝑑 that

best fit our observed data. To do this, we use a technique called

‘least-squares fit’. This technique tries to minimize the difference

between ourmodel’s predicted performance and the actual observed

performance.

Let’s say 𝑔(𝜂𝑖 ) is the observed performance for a given problem

parameter 𝜂𝑖 . We want our model, 𝑓 (𝜂𝑖 ), to be as close as possible to
𝑔(𝜂𝑖 ). We aim to find the values of 𝑎 and 𝑑 that make this difference

the smallest:

𝑎𝑟𝑔 min

𝑎,𝑑

∑
1

𝜂𝑖
·
(
log

𝑓 (𝜂𝑖 )
𝑔 (𝜂𝑖 )

)
2

.

Finding the exact values of 𝑎 and 𝑑 that minimize this difference

can be difficult. So, we use a simpler method to get approximate

values. We take 𝑎 to be the maximum observed performance value,

and 𝑑 to be the value of 𝜂𝑖 that makes 𝑔(𝜂𝑖 ) as close as possible to
𝑎/2:

𝑎 ≈ max

𝑖
𝑔(𝜂𝑖 ) (1)

𝑑 ≈ 𝑎𝑟𝑔min

𝜂𝑖

���𝑔(𝜂𝑖 ) − 𝑎
2

��� . (2)

This approximation method usually gives a good fit when our

observations aren’t too noisy. But if they are, we can try different

values of 𝑑 close to the one we found, and choose the one that gives

the best fit.

• Fig 14 Shows gemm performance on Frontier of various local

matrix size. Serve as building block for performance model

• Fig 15 Shows gemm performance on Frontier of various local

matrix size. Serve as building block for performance model

• Fig 16 and Fig 17 Shows broadcast performance on Frontier

of various local matrix size in bandwidth and runtime. Serve

as building block for performance model

• Fig 18 Performance prediction heatmap
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Figure 14: Performnace sweep forM onmost significant ker-
nel GEMM_ex on Frontier

5 APPLICATION PERFORMANCE
• Fig 19 Shows to total runtime after combine the compute and

communication optimization vs the basic 1ring chunked on

Frontier. We achieve 10.XX exaflops (I will update number)

before IR, and 9.95 exaflops after the IR. This is the first

application that harvest the 10exaflops on any system.

• Fig 21 and Fig 22 Similarly we report the strong and weak

scaling of APSP on Summit after combine all the optimization
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6 DISCUSSION
In this section, we elaborate on several challenges we faced during

the implementations.

6.1 Compute and Communication Overlapping
During the implementation of a look-ahead optimization, We de-

signed three ways to overlap the computation and communication,

see fig 23 for an HPL-MxP example for the diagonal process. Note

that the last GEMM update does not remain of fixed size through

out the run.

One simple way is to make use of a non-blocking broadcast to

allow kernels with independent data to proceed with computation.
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Figure 18: Cost performance prediction heatmap

However, this encounters several issues described in next subsec-

tion. The second way is to make use of a non-blocking GEMM ker-

nel, using GPU_Device_synchronized to control the dependencies.

However, by doing this, we are forcing the broadcast to only be over-

lapped with one chunk of data synchronization. With this strategy,

the best performance we achieve was overlapping both communica-

tion with the GEMM_Update. Finally, for best programmability and

maximum overlapping of compute and communication, we used

event based synchronization to control the dependencies. Many

current accelerators use the stream parameter to handle the data de-

pendency, we suggest that maybe if the MPI interface included the

stream parameterfor handling data dependency thatthe overlapping

of processes will be easier.
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6.2 Underlying MPI Implementation
During the development of the cross platform APSP and HPL-

MxP, we involved two different implementation of MPI library,

namely Spectrum-MPI (developed by IBM) and Cray-mpich (de-

veloped by HPE). Our application performance was significantly

impacted by the different behavior of each of the MPI. During the

experiments when using non-blocking communication on Sum-

mit (MPI_Icast, MPI_Isend, MPI_Irecv), we observed a significant

performance reduction on the bandwidth, see Fig 6. In addition,

whenwe activate GPU-awareness for Spectrum-MPI, allowing NICs

direct access to GPU memory, we observe a unexpected behav-

ior for Spetrum_MPI_Bcast and Spetrum_MPI_Ibcast. The library

broadcast appears to synchronize the device before invoking the

broadcast, causing our overlapping strategies that depend on non-

blocking GPU kernels to fail.

On the other hand, when we experiment the tuning of QR QC

on Frontier, we did not observe significant improvement over the

default setting. We are suspecting the implementation of Cray-

mpich did not fully utilize the underlying GPU-links.

6.3 Variation in runs
During the process of gathering data for Frontier system network,

we experienced random hangs or delays on communication, see

fig ??. At a user level, MPI will detect a timeout but we could not

identify the cause of these spikes. We believe this could be due to

slingshot routing table redistribution of new dynamic routes.

We would like to design a broadcast algorithm that is resilience

for large network topologies experiencing transient issues.

7 CONCLUSION
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