
A communication-avoiding 3D sparse triangular solver
Piyush Sao, Ramakrishnan

Kannan
∗

Oak Ridge National Laboratory

Oak Ridge, TN

{saopk,kannanr}@ornl.gov

Xiaoye Sherry Li

Lawrence Berkeley National

Laboratory

Berkeley, CA

xsli@lbl.gov

Richard Vuduc

Georgia Institute of technology

Atlanta, GA

richie@gatech.edu

ABSTRACT

We present a novel distributed memory algorithm to improve the

strong scalability of the solution of a sparse triangular system. This

operation appears in the solve phase of direct methods for solving

general sparse linear systems, Ax = b. Our 3D sparse triangular

solver employs several techniques, including a 3D MPI process grid,

elimination tree parallelism, and data replication, all of which re-

duce the per-process communication when combined. We present

analytical models to understand the communication cost of our

algorithm and show that our 3D sparse triangular solver can re-

duce the per-process communication volume asymptotically by

a factor of O

(
n1/4

)
and O

(
n1/6

)
for problems arising from the

finite element discretizations of 2D “planar” and 3D “non-planar”

PDEs, respectively. We implement our algorithm for use in Su-

perLU_DIST3D, using a hybrid MPI+OpenMP programming model.

Our 3D triangular solve algorithm, when run on 12k cores of Cray

XC30, outperforms the current state-of-the-art 2D algorithm by 7.2x

for planar and 2.7x for the non-planar sparse matrices, respectively.

KEYWORDS

sparse matrix computations, distributed-memory parallelism, com-

munication-avoiding algorithms

ACM Reference Format:

Piyush Sao, Ramakrishnan Kannan, Xiaoye Sherry Li, and Richard Vuduc.

2019. A communication-avoiding 3D sparse triangular solver. In 2019 Interna-
tional Conference on Supercomputing (ICS ’19), June 26–28, 2019, Phoenix, AZ,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3330345.

3330357

1 INTRODUCTION

This paper presents a new algorithm for solving a sparse triangular

system of linear equations, Tx = b, where T is either an upper- or

lower-triangular sparse matrix. A sparse triangular solver (SpTrs) is

an important sub-step during LU and Cholesky factorization, which

∗
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-

00OR22725 with the U.S. Department of Energy. The United States Government retains

and the publisher, by accepting the article for publication, acknowledges that the

United States Government retains a non-exclusive, paid-up, irrevocable, world-wide

license to publish or reproduce the published form of this manuscript, or allow others to

do so, for United States Government purposes. The Department of Energy will provide

public access to these results of federally sponsored research in accordance with the

DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

ACM acknowledges that this contributionwas authored or co-authored by an employee,

contractor, or affiliate of the United States government. As such, the United States

government retains a nonexclusive, royalty-free right to publish or reproduce this

article, or to allow others to do so, for government purposes only.

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6079-1/19/06. . . $15.00

https://doi.org/10.1145/3330345.3330357

are direct methods for solving general linear systems. SpTrs also ap-

pears in preconditioners based on incomplete factorization, which

commonly appear in Krylov subspace-based iterative methods.

In the context of distributed memory sparse direct methods

for solving Ax = b, where A is any general matrix, consider the

example of sparse LU factorization. It first decomposes A into the

product A = LU , where L and U are lower- and upper-triangular

matrices, respectively. Then, one may solve for x by a pair of SpTrs

operations, Ly = b and Ux = y. In this setting, the factorization

step (determining L and U) usually dominates the pair of SpTrs

operations. However, a common use-case for sparse direct solvers

is using many right-hand sides for a fixed matrix (pattern). This

scenario occurs in time-stepping numerical ODE solvers, where b
changes at each time step. Similarly, in the case of a sparse iterative

solver, we might factor the system once upfront and then invoke

SpTrs with a new right-hand side during each iteration. Thus, the

scalability of SpTrs can also become a bottleneck.

In our previous work, we developed a communication-avoiding

algorithm for LU factorization [21]. The idea underlying this Su-

perLU_Dist3D method is to organize the MPI processes logically

into a three-dimensional grid, rather than a traditional 2D one, and

then exploit the structure of the elimination-tree—an abstraction

that captures the data dependencies in sparse LU factorization—to

replicate data judiciously. This combination of techniques prov-

ably reduces communication asymptotically in the problem size

in common cases. In this work, we leverage the 3D sparse LU

data structure of SuperLU_Dist3D to develop a communication-

avoiding SpTrs, which yields asymptotic reductions in the latency

and communication-volume costs of a conventional SpTrs.

Briefly, our new 3D SpTrs works as follows. Consider the 3D

process grid as a collection of 2D MPI process grids. The prior

technique of SuperLU_Dist3D mapped independent subtrees of

the elimination-tree to each 2D process grid and replicated the

common ancestors. Our 3D triangular solver exploits this same 3D

organization. It first solves independent subtrees on different 2D

process grids, and then performs a reduction before solving the

subproblem in the common ancestor tree on a single 2D grid.

To analyze the communication and latency costs of our new

method, we consider prototypical matrices arising from the dis-

cretization of “planar” and “non-planar” PDEs. We would like to

clarify that, a planar problem is one where the physical geometry

of the input domain, when discretized, is flat or nearly so; we use

the term planar instead of 2D to distinguish the problem geometry

from that of the logical MPI process grid. Our analysis shows that

the 3D SpTrs can reduce the communication and latency costs by

a factor of O

(
1√
pz

)
, over a purely 2D algorithm, where pz is the

number of 2D process grids. This advantage comes at the cost of a

https://doi.org/10.1145/3330345.3330357
https://doi.org/10.1145/3330345.3330357
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1145/3330345.3330357

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Piyush Sao, Ramakrishnan Kannan, Xiaoye Sherry Li, and Richard Vuduc

small amount of additional memory, which is needed to replicate

the right-hand side.

We present empirical scalability results for our 3D SpTrs on up

to 24k cores of a Cray XC30 machine. For a single right-hand side,

our 3D SpTrs achieves 4.6× and 1.8× speedup over the baseline

2D algorithm for planar and non-planar matrices, respectively. For

multiple right-hand sides, our 3D SpTrs achieves 7.2× and 2.7×

speed-up over the baseline 2D algorithm for planar and non-planar

matrices, respectively. Even though, we present the discussions in

the context of triangular matrices in direct methods, without loss

of generality, it can be extended to general cases as well and SpTrs

can actually improve the direct solver itself.

2 BACKGROUND

In this section, we review relevant background sufficient to under-

stand the new algorithm (Section 3) and its analysis Section 4. We

first give an overview of sparse triangular systems arising from

sparse direct solver and the baseline parallel triangular solver al-

gorithm. Then we briefly discuss the 3D sparse LU data structure

introduced in [21], which is also used by the new algorithm.

Terminology. In general, triangular solver for a single right-hand

side known as xTrsv andmultiple right-hand sides known as xTrsm

is optimized differently on the single node case. In this paper, we

do not require to distinguish between the two cases as we are con-

cerned with distributed memory scalability aspect of it, and use the

term SpTrs to denote the two cases of the parallel sparse triangular

solver. SpTrS2D is used to refer the baseline sparse triangular solver

algorithm that uses 2D process grid, and we call the new 3D sparse

triangular solve algorithm SpTrS3D.

2.1 Sparse Direct Solver

A sparse direct solver computes the solution of Ax = b in the

following three steps.

• Pre-Processing: The matrix A is permuted to improve the

numerical stability and to reduce the fill-ins in L andU fac-

tors. This step also involves the symbolic-factorization to

compute the fill-in structure and sparse meta-data for the

next step numerical factorization.

• Numerical Factorization: In this step, we compute the unit

lower triangular L and the upper triangularU factors so that

A = LU .

• Solve Step:We solve the lower triangular system Ly = b for

y followed by solving the upper triangular system Ux = y
to find the final solution x .

SpTrs is used in the the solve-step of the direct solver. In general,

numerical factorization is the costlist step in the direct solver and

data structure is designed to optimize it. Hence SpTrs is designed

to use the data structure which is optimized for the numerical fac-

torization step. Designing 3D data structure to improve scalability

of numerical factorization was the subject of our previous work[21].

In this paper, we design and analyze sparse triangular solvers on

the 3D data structure.

2.2 Triangular Systems

Table 1: List of symbols used

Symbol type Symbol Description

P #MPI processes

Px , Py , Pz Process grid dimensions

Pxy Px × Py # processes in xy plane

px , py , pz Process coordinates

Pr (k) (k mod Px)-th process row

Pc (k) (k mod Py)-th process column

Process

Pkk Process that owns Akk block (Pkk = Pr (k) ∩ Pc (k))

E Elimination tree of A
S Top level separator of E
C1, C2 Children etrees of E
Desc(k) Descendants of node k in E

Graphs

Anc(k) Ancestors of node k in E

n Dimension of the matrix A
l log

2
Pz

W Communication cost

V Per-process communication volume

α Cost of initiating a data transfer

β Cost of transferring a unit data

Misc.

γ Number of right hand sides

Algorithm 1 Forward substitution algorithm for solving lower

triangular system of equation Ly = b

1: function LSolve(L,b):
2: n ← dim(L)
3: for i = {1, 2 . . . , n } do:

4: yi ←
bi−

∑i−1
j=1 li jyj
lii

5: Return y

A11

A22

A13

A31

A23

A32 A33

(a)

L11

L22

U13

L31

U23

L32

U11

U22

U33
L33

(b) (c)

Figure 1: A 3 × 3 block sparse “arrowhead” matrix, its L and U factors and

its block-elimination tree.

2.2.1 Dense triangular solver. A triangular system can be di-

rectly solved due to its structure. Consider, a lower triangular ma-

trix Lx = b for solving x1, · · · ,xn , first one computes x1 = b1/l11,
substitute the computed x1 into the second equation and solve for

x2. This process of solve-and-substitute is carried out sequentially

until all xi ’s, ∀i ∈ [1,n] are found, as shown in Algorithm 1. When

the matrix is upper triangular, the process of solve-and-substitute

is carried out in reverse order, i.e., xn is solved first and x1 in the

last, where n denotes the dimension of the system. The process of

solving lower and upper triangular systems are also called forward-

substitution and backward-substitution, respectively.

A communication-avoiding 3D sparse triangular solver ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

2.2.2 Triangular systems in sparse direct solvers. Triangular sys-

tem arising from sparse direct solvers have a recursive block-arrowhead

structure. For instance, in Fig. 1 we show a 3×3 block sparse matrix

A, and its final L andU factors.

Consider a triangular system Ly = b, where L is the 3×3 lower tri-
angular matrix shown in Fig. 1. Note that block L21 is zero, therefore
L11y1 = b1 and L22y2 = b2 can be solved concurrently. Following

that, L33y3 = b3 − L31y1 − L32y2 can be solved for y3. This depen-
dency in solution of block 3×3 lower triangular system is shown as

a directed-acyclic graph (DAG) in Fig. 1. The dependency in L solve

is the same as dependency in elimination of nodes in the numerical

factorization step; and is referred as elimination tree or etree.

2.3 Dependency in Sparse Triangular Solver

The block sparse matrix shown in Fig. 1 comes from so-called

nested-dissection (ND) ordering of the input matrix[6]. Such an

ordering is primarily used for reducing fill-ins in L andU matrices.

It also exposes parallelism in sparse LU factorization and triangular

solve.

Briefly ND ordering works as follows. Any sparse matrix A has

a associated graph G, which has same number of vertex as the

dimension of A, and for any non-zero entry ai j in A, there is an
edge in G from vertex vi to vj . For instance, in Fig. 2a, we show a

25×25 sparse matrix that arises from finite difference discretization

of a 5 × 5 grid is shown in Fig. 2b. The ND ordering partitions in

the graph G into three disjoint vertex set {C1, S, C2} such there

are no edges from any vertex in C1 to any vertex in C2. The vertex

set S is called the separator. Using this partition, we reorder the

matrix A so that the vertices in S are numbered last. In Fig. 2b,

we highlight the separator and in Fig. 2c, we show the reordered

matrix. The Fig. 1a shows a simplified block representation of the

reordered matrix Fig. 2c where A11, A22, and A33 correspond to C1,

C2, and S respectively, with remaining submatrices representing

the edges that connect these partitions. The partition C1 and C2

are recursively dissected to get more disjoint subgraphs till each

subgraph is sufficiently small. Graph partitioning tools such as

Metis[15] or Pt-Scotch [18] can be used for calculating such a

partition.

As shown in Fig. 3, ND ordering leads to amulti-level dependency

tree, also known as elimination tree or etree. Etree describes the

order of elimination in the numerical factorization process. lSolve

has the same dependency as numerical factorization, so the etree

also describes the dependency in lSolve.

When the input matrix A is symmetric, uSolve follows the re-

verse order that of lSolve, i.e., lSolve traverses the etree in a

post-order or bottom-up order, whereas uSolve traverses the etree

in top-down order. When the matrix A is asymmetric, uSolve may

traverse a slightly different tree than etree in top-down order. For

simplicity, in subsequent discussion, we assume that in the unsym-

metrical case the etree is obtained by applying ND on the symmetric

matrix A +AT . Hence the dependency tree for uSolve is reverse

that of lSolve.

2.4 Parallel Sparse Triangular Solve

2.4.1 SuperLU_Dist Data Structure. Our algorithm is built on

top of SuperLU_Dist. SuperLU_Dist is an open-source sparse-

direct solver library for general sparse matrices that uses right-

looking scheduling and static pivoting. The baseline SuperLU_Dist

uses a two-dimensional logical process arrangement. In the two

dimensional process-grid, it distributes the input matrix A into

2D block-cyclic fashion. After the factorization, Amatrix is over-

written by L and U factors. Hence, L and U matrix are also dis-

tributed in block cyclic fashion. The right hand side b vector is

distributed among the diagonal processes, so that bk is owned by

Pkk . Table 1 presents the brief description of the notations used in

this section.

2.4.2 Distributed lSolve. The lSolve performs following oper-

ation to calculate k-th segment of solution yk :

yk ← L−1kk
©«bk −

∑
j ∈Desc(k)

Lk jyj
ª®¬ . (1)

This operation is performed in 2D process grid using following op-

erations. Any process Pk j ∈ Pr (k), keeps a vector sk to accumulate

the local update −Lk jyj .

• Local Solve: Pj j solves Lj jyj = bj for yj .
• Broadcast: Pj j broadcasts the computedyj across its process
column Pc (j)
• Local Update: Any process Pk j ∈ Pc (j) that owns a non-

empty block Ljk receives yj , and performs the local update:

sk ← sk − Lk jyj

• Reduction:When all process in Pr (k) have finished all the

updates on sk , the vector sk is reduced across Pr (k), to accu-

mulate all the updates to Pkk

sk ←
∑

i ∈Pr (k)

sik ,

where sik is the sk from the i-th process in Pr (k). Pkk updates

bk ← bk − sk so that

bk ← bk −
∑

j ∈Desc(k)

Lk jyj ,

and Pkk performs k-th local-solve.

In lSolve, yk are computed in bottom-up order of etree to maxi-

mize available parallelism.

2.4.3 Limitations of 2D lSolve. In the distributed lSolve algo-

rithm, local-update is themain computation step, whereas broadcast

and reduction are two main communication substeps. Assuming

the computation is load balanced then local-update can exploit all

the available P processors concurrently. However, each process

participates in O

(
n√
P

)
broadcasts and O

(
n√
P

)
reductions. There-

fore, broadcast and reduction step only scales as 1/
√
P . Hence the

communication in lSolve doesn’t scale as well as the computation.

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Piyush Sao, Ramakrishnan Kannan, Xiaoye Sherry Li, and Richard Vuduc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 • • •

2 • • • •

3 • • • •

4 • • • •

5 • • •

6 • • • •

7 • • • • •

8 • • • • •

9 • • • • •

10 • • • •

11 • • • •

12 • • • • •

13 • • • • •

14 • • • • •

15 • • • •

16 • • • •

17 • • • • •

18 • • • • •

19 • • • • •

20 • • • •

21 • • •

22 • • • •

23 • • • •

24 • • • •

25 • • •

(a) A 25×25 sparse matrix

1 2 3 4 5

6 7 8 9 10

21 22 23 24 25

11 12 13 14 15

16 17 18 19 20

(b) The associated graph and separator

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 • • •

2 • • • •

3 • • • •

4 • • • •

5 • • •

6 • • • •

7 • • • • •

8 • • • • •

9 • • • • •

10 • • • •

11 • • • •

12 • • • • •

13 • • • • •

14 • • • • •

15 • • • •

16 • • •

17 • • • •

18 • • • •

19 • • • •

20 • • •

21 • • • •

22 • • • • •

23 • • • • •

24 • • • • •

25 • • • •

(c) Reordered sparse matrix using ND or-

dering

Figure 2: A sparse matrix (Fig. 2a), its associated graph (Fig. 2b), and a separator (highlighted in yellow); and the re-ordered matrix (Fig. 2c) using nested

dissection (ND) ordering. The ND orders the variables so that the variables corresponding to the separator are numbered last.

(a) (b)

Figure 3: An 18 × 18 sparse matrix and its elimination tree obtained by ND

ordering (Section 2.3). Here light yellow squares represent zero entries, blue

entries represent non-zero entries in A, and red squares represent non-zero

entries due to fill-in during the factorization.

2.5 3D Sparse LU factorization

In our previous work, we presented a communication-avoiding

extension of SuperLU_Dist’s numerical factorization step, that

uses three dimensional data distribution instead of two. The new

algorithm SpTrS3D uses this 3D distribution.

2.5.1 3D Data Distribution. The 3D sparse LU algorithm uses

elimination tree to guide the data distribution in 3D process grid.

The 3D process grid can be considered as Pz 2D grids of size Pxy . In
the 3D algorithm, the etree is partitioned into independent subtrees,

and each independent subtree, called leaf subtree, is assigned to a

2D grid. Each 2D grid also keeps a copy of the ancestors-subtree of

the leaf subtree to perform so-called Schur-complement updates. For
instance, in Fig. 4a, we show a two-level partition of the etree, and

in Fig. 4b we show how this partition is mapped to four 2D process

grids. The root of the etree node-0, is replicated on all process nodes.

On the other hand, node-1, and 2, are replicated on grid-0 and 1; and

grid-2 and 3 respectively. In the last level, node 3 to 6 corresponds

to an entire subtree of the etree, and are assigned to only one one

of the 2D grid.

(a) Etree representation of 3D data distribution

(b) Mapping of matrix blocks to 3D process grid

Figure 4: Three-dimensional data distribution in SuperLU_Dist3D [21]. In

Fig. 4a we show the global elimination tree. Nodes 0 to 2 are ancestor-subtrees
and nodes 3 to 6 are leaf subtrees. In Fig. 4b, we show how the ancestor and

leaf subtrees are mapped to four 2D process grids.

2.5.2 3D Factorization Algorithm. In the 3D factorization algo-

rithm, each grid factors its leaf-subtree and performs update on its

copy of the ancestor subtrees. Before factoring an ancestor subtree,

updates on all the copies of subtree is reduced to one process grid

and then factored in 2D fashion.

At the end of the factorization, all the LU factors are gathered

into a 2D grid to perform the solve step. Doing so has the following

drawbacks to be addressed in this paper:

• Before one can perform the solve step, all the L andU factors

need to be gathered in a single 2D grid, which requires extra

communication and synchronization overhead.

A communication-avoiding 3D sparse triangular solver ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

• The solve step can only use Pxy processors, and the remain-

ing processes are idle.

• As we see in Section 4, 2D solve algorithm has higher com-

munication costs, thus shows poor scalability.

3 3D TRIANGULAR SOLVER

In this section, we describe the 3D triangular solve algorithm for

sparse matrices. First, we describe the algorithm for 3 × 3 block

sparse case on two 2D process grids (Pz = 2), and thenwe generalize

it for Pz = 2
l
.

3.1 3 × 3 block sparse case

Consider the 3 × 3 block sparse L and U matrix distributed over

two 2D process grids as shown in Fig. 1. Sparse block matrices

L11, L31 and U11, U13 reside on grid-0; and L22, L32 and U22, U23

reside on grid-1. The factored block L33 and U33 reside only on

grid-0. The right-hand side b1 and b2 reside on grid-0 and grid-1,

respectively, whereas b3 is replicated on both the process grids

and initialized with zeros on grid-1. Fig. 5, shows the timeline of

SpTrS3D involving the L and uSolve substeps.

3.1.1 lSolve. In the lSolve, both grid-0 and grid-1 solvesL11y1 =
b1 and L22y2 = b2 in parallel, and update corresponding b3 blocks
as

b0
3
= b0

3
− L31y1

on grid-0, and

b1
3
= −L32y2

on grid-1. After the update, grid-1 sends the b1
3
to grid-0, which

accumulates the updates on b3 from both grids as follows:

b0
3
= b0

3
+ b1

3
= b0

3
− L31y1 − L32y2.

Thus, updated b0
3
contains updates from both process grids and

then, grid-0 solves L33y3 = b3 for the final y3.

3.1.2 uSolve. The uSolve can start after grid-0 has computed

y3. First, the grid-0 solves U33x3 = y3 for x3 and sends the x3
to grid-1. Now using x3 both grid-0 and grid-1 can update the

y1 = y1 − U13x3 and y2 = y2 − U23x3 respectively. And lastly,

grid-0 and grid-1 solve U11x1 = y1 and U22x2 = y2 for x1 and x2
respectively. So at the end of L andU solve, the final solution x1 and
x2 reside in grid-0 and grid-1, and x3 is replicated in both process

grids. Note that communication pattern in uSolve is reverse of

lSolve.

3.2 General Case

In subsequent discussion, we focus on lSolve since, qualitatively

U - and lSolves have same structure, albeit in a reverse order.

The 3D sparse LU factorization algorithm in [21], can use Pz = 2
l

2D grids. The triangular solve can be extended for Pz = 2
l
in similar

fashion as the factorization. In the lSolve, each two grid performs

the lSolve for its leaf-subtree and accumulates update on bk ’s,
for each supernode k in its ancestor subtrees. Before performing

lSolve for ancestor subtree, updates on bk from different subtrees

are reduced to a 2D grid, and the 2D performs the lSolve in the

2D fashion.

Figure 5: Timeline (from left to right) of SpTrS3D for Pz = 2
l , l = 2 two-

dimensional process grids. Here each node with label Lk orUk denotes a 2D

triangular solve, Lkkyk = bk or Ukkxk = yk . A red arrow denotes communi-

cation and direction between two process grids.

Table 2: Asymptotic communication cost and volume for Sp-

TrS2D and SpTrS3D, on planar (2D PDE) and non-planar

(3D-PDE) input problems

Problem type Communication Param SpTrS2D SpTrS3D

Cost (W) O

(
n√
P
+
√
n
)

O

(
n√
Pz P
+
√
n
)

Average Volume

(V avд
)

O

(
n√
P

)
O

(
n√
Pz P

)
Planar

(2D PDE) Max Volume

(Vmax
)

O

(
n√
P

)
O

(
n√
Pz P
+
√
nPz√
P

)
Cost (W) O

(
n√
P
+n2/3

)
O

(
n√
Pz P
+n2/3

)
Average Volume

(V avд
)

O

(
n√
P

)
O

(
n√
Pz P

)
Non-Planar

(3D PDE) Max Volume

(Vmax
)

O

(
n√
P

)
O

(
n√
Pz P
+n2/3

√
Pz√
P

)

For instance, in Fig. 4, the etree is partitioned for Pz = 2
2
2D

grids numbered 0 to 3. In the first step, each of the 2D grids performs

lSolve on the leaf subtrees (node-3 to 6), and performs the updates

on respective ancestor subtrees. In the second step, grids 0 and 1

reduce the update on node-1 to grid-0, and grid-0 performs the

lSolve for node-1; and grids 2 and 3 reduce the update on node-2

to grid-2, and grid-2 performs the lSolve for node-2; and both grids

0 and 2 perform the updates on node-0, the root of the tree. In the

final step, updates on node-0 from all the grids are reduced to grid-0

and grid-0 performs the lSolve in 2D fashion.

The uSolve starts right after grid-0 has finished lSolve for node-

0, and then grid-0 performs uSolve for node-0 and broadcasts it to

all the grids, so each process can perform the local-update. In the

second step, grid-0 and grid-2 performs the uSolve for node-1 and

2, respectively; followed by broadcasting it to grid-1 and 3. Finally,

each grid performs the uSolve for their respective leaf-subtree.

We give the pseudocode of 3D lSolve in Algorithm 2. We show

the timeline for SpTrS3D in Fig. 5 when there are Pz = 4 2D grids.

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Piyush Sao, Ramakrishnan Kannan, Xiaoye Sherry Li, and Richard Vuduc

Algorithm 2 3D Sparse Lower Triangular Solve Algorithm

Require: Factored L and U matrices, b : right hand side; Process coor-

dinates

{
px , py, pz

}
; Ef : grid-local etree; pz = 2

l
for some integer

l
lSolve: y ← L−1b

1: for lvl in l : 0 do: ▷ Bottom-up traversal of Ef
2: if pz = k2l−lvl, k ∈ Z then:
3: σ ← Ef [lvl] ▷ σ is the index of subtree

4: yσ ← lsolve2D(Lσ , bσ)
5: bi ← bi −

∑
i∈Anc (σ) Liyσ ▷ Local-update

6: if lvl > 0 then:

7: if k mod 2 ≡ 0 then: ▷ Note pz = k2l−lvl

8: dest = pz
9: src = pz + 2l−lvl

10: else:

11: src = pz
12: dest = pz − 2l−lvl

13: for la in lvl − 1 : 0 do:

14: for s ∈ Ef [la] do:
15: if pz = src then:

16: Send bsrcs to dest

17: else:

18: Receive bsrcs from src

19: bdests = bdests + bsrcs
return y

4 COMMUNICATION ANALYSIS

We analyze the communication costs and volume of the SpTrS3D

for triangular matrices that occur in solving the PDEs with two

and three-dimensional geometries. We differentiate between the

following three communication metrics:

• Communication CostW : It denotes the number of words

sent along the critical path of the computation.

• Average per-process communication volumeV avд : It de-
notes the average data sent among all the processes.

• Maximumper-process communication volumeVmax : It
denotes the maximum number of data sent by any process.

The difference between communication cost and volume can

be better understood with the following example. Consider a ring
broadcast of data of lengthγ units between P processes, i.e.p0 sends
a message of length γ to p1, which then relays it to p2 and so on,

until all the P processes have received the message. In this case, the

time to finish the broadcast (Tcomm) will be (α+βγ)(P−1), where α
is the cost of initiating a message transmission, and β is the cost of

sending a unit data. The communication costW is the co-efficient

of β in the expression for Tcomm , i.e.W = (P−1)γ 1. On the other

hand, in this example V avд
will be γ (P − 1)/P and Vmax = γ .

Informally, the communication costW correlates to the time

to completion when an application is communication-bound. The

average per-process communication volume V avд
is a measure of

energy spent in the communication and network load due to the

computation; and Vmax
in an indicator of communication imbal-

ance and possible network contention. In a dynamic asynchronous

computation such as SpTrs, its difficult to precisely measureW ,

1
We use #words as the unit for communication cost instead of time. This choice also

facilitates direct comparison of communication cost and volume

!""

!#" !##

!$" !$# !$$

!%" !%# !%$!%%

!&" !&# !&$!&% !&&

'((→ '*(; ,, . > 0 ; ∀. > ,
234 . < #of blocks

'(7 → '((; ∀8 ≤ ,; ,, 8 > 0
Critical Path

Figure 6: Communication pattern in dense lSolve in 2Dgrid

whereasV avд
andVmax

can be measured readily, which is helpful

in validating the analytical models that we develop in this section.

Further, if a computation is entirely communication bound, then

the following holds:

V avд ≤ Vmax ≤W .

Thus, one can estimate a lower bound onW by usingVmax
. Hence

V avд
and Vmax

provide an important insight into communication

characteristics of any application.

4.1 Dense Triangular Solve on 2D Process Grid

Consider a dense lower triangular system Ly = b distributed on

a square 2D process grid of dimension

√
P ×
√
P as shown in the

Fig. 6. For sake of simplicity, we assume that blocking parameter

for 2D block cyclic data distribution is one and number of right

hand side is one i.e. b ∈ Rn .

4.1.1 Communication CostW . The critical path for the L solve

is shown in Fig. 6. In the k-step of dense L solve, process Pkk
computes the yk and broadcast it across the process column Pc (k).
The process Pk+1,k computes bk+1−=lk+1,kyk and sends it to the

process Pk+1,k+1, which then computesyk+1. Thus the total number

of messages sent in the critical path of L-solve is 2(n − 1), and

each message has length γ . So in the case of dense L solve total

communication cost in the critical path is given by:

WDense (n, P) = O (n) . (2)

From Eq. (2), the communication cost in the dense L-solve in 2D

process grid does not scale with the number of processors.

4.1.2 Communication Volume V . In the dense L solve, each pro-

cess only sends and receives O

(
n√
P

)
words. So the per-process

communication volume, in this case, is given by:

VDense (n, P) = V
avд
Dense (n, P) = V

max
Dense (n, P) = O

(
n
√
P

)
. (3)

4.2 Planar Sparse Matrices

4.2.1 2D Sparse Triangular Solve. In the case of planar sparse

matrices, the top level separator is a dense matrix of dimensions

O
(√
n
)
. So the cost solving the top separator will beWDense (

√
n) =

A communication-avoiding 3D sparse triangular solver ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

O
(√
n
)
. In the first level, we have two separators of dimension

O

(√
n/2

)
. Since solving the two separators in this level is inde-

pendent, and is done in parallel, therefore communication costs

will beWDense (
√
n/2) = O

(√
n/2

)
. The 2D triangular solve can

exploit the parallelism of degree up to

√
P . So for the triangular

solve of any level-i such that 2
i ≤
√
P , the communication cost will

beWDense (
√
n/2i) = O

(√
n/2i

)
. Let lvl0 be the first level where

2
lvl0 >

√
P , i.e.,

lvl0 = min

{
i | 2i >

√
P , i ∈ Z

}
=

⌈
log

2

√
P
⌉
. (4)

So lvl0 ≈ 1/2 log P . We can write the total communication cost of

triangular solve from level-0 to level-(lvl0 − 1) as:

Wl<lvl0 (n, P) =

lvl0−1∑
i=0

√
n

2
i = O

(√
n
)

(5)

For levels > lvl0, the 2D algorithm can exploit the

√
P parallelism.

The total number of variables in levels > lvl0 is n−
√
nP1/4 = O (n).

Hence the total communication cost in solving levels>lvl0 is

Wl ≥lvl0 (n, P) =
n −
√
nP1/4
√
P

= O

(
n
√
P

)
. (6)

From Eqs. (5) and (6), the total communication cost for the 2D

algorithm for the planar problems is given by:

W2D (n, P) = O

(
n
√
P
+
√
n

)
. (7)

Communication Volume. To calculate the communication volume

of the 2D algorithm, the sparse triangular system can be considered

as a sequence of dense triangular systems of supernodes of dimen-

sion ni so that
∑
i ni = n. Since in the case of dense triangular solve

in 2D process grid V avд = Vmax
(from Eq. (3)), it will be the same

in this case as well. So the communication volume can be written

as follows:

V2D (n, P) =
∑
i
VDense (ni , P) =

∑
i ni
√
P
= O

(
n
√
P

)
. (8)

4.2.2 3D Sparse Triangular Solve. For the 3D algorithm, we have

P = PzPxy , where Pz is the number of 2D grids each with Pxy
processes. The 3D algorithm uses Pz is a power of two, Pz = 2

lz
.

In our analysis, we assume that the 2D grid is a square grid of

dimension

√
Pxy ×

√
Pxy .

We consider the communication costs of any process in grid-0,

since it lies in the critical path of the triangular solve. The leaf

subtree in grid-0 has dimension ≈ n/Pz . The leaf-subtreee is solved
by the 2D algorithm on a process grid of size Pxy . From Eq. (19),

the communication costs of solving the leaf-subtree is:

W
3D−leaf =W2D

(
n

Pz
, Pxy

)
= O

(
n

Pz
√
Pxy
+

√
n

Pz

)
(9)

= O

(
n
√
PzP
+

√
n

Pz

)
. (10)

In each level-i , from 0 to lz − 1, the grid-0 solves a dense trian-

gular system of size

√
n/2i , which has a communication cost of

WDense (
√
n/2i , Pxy) =

√
n/2i . Thus the total communication cost

in solving from level-0 to lz − 1 is given by:

W3D−Anc (n, P) =

lz−1∑
i=0

√
n

2
i . = O

(√
n
)

(11)

Lastly, before solving any level-i from 0 to lz − 1, grid-0 reduces
the contribution from the other grids. In the i-th level, it receives

vector of size

√
n/2i . However, only the diagonal processes partic-

ipate in this step. Hence the per-process communication cost for

the reduction step in the i-th level is

√
n

Pxy2i
=

√
nPz
P2i . So the total

communication cost in the reduction step from all the level is:

W z (n, P , Pz) =

lz−1∑
i=0

√
n

Pxy2i
= O

(√
nPz
P

)
. (12)

Combining Eqs. (10) to (12), we obtain the following expression

for the communication cost of the 3D algorithm for planar matrices:

W3D (n, P , Pz) = O

(
n
√
PzP
+

√
n

Pz
+
√
n +

√
nPz
P

)
. (13)

Since

√
n >

√
n
Pz and

√
n >

√
nPz
P , hence we can simplify Eq. (13)

to get the following expression:

W3D (n, P , Pz) = O

(
n
√
PzP
+
√
n

)
(14)

Communication Volume. To get the average communication cost

V avд
, it is sufficient to assume that each grid is solving a triangular

solve of dimension n/Pz by using the 2D algorithm. Hence,

V
avд
3D (n, P) = V

avд
2D (

n

Pz
, Pxy) = O

(
n
√
PzP

)
. (15)

To calculate maximum per-process communication volume Vmax
,

we consider the communication of any process in grid-0 since it

participates in the all the level of triangular solve. The communi-

cation volume for any process in grid-0 has two components a)

leaf-subtree solve which amount to O

(
n√
PzP

)
; and b) ancestor-

subtree solve, which has the same asymptotic complexity as solv-

ing top-level separator of dimension

√
n in 2D grid of size Pxy , i.e.

VDense (
√
n, Pxy) =

√
n

√
Pxy
= O

(√
nPz√
P

)
. Thus, we can write the

maximum per-process communication of the 3D algorithm as:

Vmax
3D (n, P , Pz) = O

(
n
√
PzP
+

√
nPz
√
P

)
(16)

To minimize Vmax
3D (n, P), we should have Pz = n1/2, in which

case Vmax
3D (n, P) = O

(
n3/4
√
P

)
. Hence optimal Vmax

3D (n, P) is smaller

by a factor of n1/4 to Vmax
2D (n, P).

4.3 Non-planar Sparse Matrices

In the case of non-planar sparse matrices, the top level separator

has dimension n2/3, and nodes in the i-th level have dimension

(n/2i)2/3.

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Piyush Sao, Ramakrishnan Kannan, Xiaoye Sherry Li, and Richard Vuduc

4.3.1 2D Sparse Triangular Solve. Similar to planar case, to cal-

culate the communication costs of the 2D algorithm, we calculate

Wl<lvl0 (n, P) andWl ≥lvl0 (n, P), where lvl0 is defined by Eq. (4).

The corresponding equation to Eq. (5) for non-planar case can be

written as:

Wl<lvl0 (n, P) =

lvl0−1∑
i=0

(n
2
i

)
2/3
= O

(
n2/3

)
, (17)

and equation corresponding to Eq. (6) is :

Wl ≥lvl0 (n, P) =
n − n2/3P1/4
√
P

= O

(
n
√
P

)
. (18)

So the total communication cost is given by:

W2D (n, P) = O

(
n
√
P
+ n2/3

)
(19)

Communication Volume. Eq. (8) also holds for non-planar input

problems.

4.3.2 3D Sparse Triangular Solve. Similar to planar case, we

calculateW
3D−leaf ,W3D−Anc andW z

for non-planar problems as

follows:

W
3D−leaf =W2D

(
n

Pz
, Pxy

)
= O

(
n
√
PzP
+

√
n

Pz

)
(20)

W3D−Anc (n, P) =

lz−1∑
i=0

(n
2
i

)
2/3
= O

(
n2/3

)
(21)

W z (n, P , Pz) =

lz−1∑
i=0

(
n

Pxy2i

)
2/3

= O

((
nPz
P

)
2/3

)
(22)

(23)

Combining Eqs. (20) to (22), we get the following expression for

communication cost:

W3D (n, P , Pz) = O

(
n
√
PzP
+ n2/3

)
(24)

Communication Volume. The expression for V
avд
3D for planar

input problem Eq. (15) also hold for non planar problems. Using a

similar argument as for the case of planar problems, we arrive at

following expression for Vmax
3D for non-planar problems

Vmax
3D (n, P , Pz) = O

(
n
√
PzP
+ n2/3

√
Pz
√
P

)
(25)

To minimize communication volume, we should have Pz = n1/3,

in which case Vmax
3D (n, P) = O

(
n5/6
√
P

)
. Hence optimal Vmax

3D (n, P)

is smaller by a factor of n1/6 to Vmax
2D (n, P).

In Table 2, we summarize the asymptotic communication cost

and volume for SpTrS2D and SpTrS3D on planar and non-planar

input problems. In Section 5.4, we present some empirical result on

average and maximum per-process communication volume.

5 RESULTS

In this section, we present results from a series of numerical exper-

iment to understand the scalability of 3D sparse triangular solver

algorithm.

Table 3: Test sparse matrices used in experiments

Name Application n nnz
n

atmosmodd CFD 1.3e6 6.9

boneS10 Model reduction 9.1e5 44.7

CurlCurl_4 Model Reduction 2.4e+6 10.9

dielFilterV3real FEM/EM 1.1e+6 81.0

ldoor Structural 9.5e+5 44.6

nlpkkt80 KKT matrices 1.1e+6 26.5

Ecology1 Ecology/Circuit 1.0e+6 5.0

S2D9pt3072 PDE 9.4e+6 9.0

Serena Structural 1.4e+6 46.1

torso3 PDE 2.6e5 17.1

5.1 Experimental Set-up

5.1.1 Test Bed. We ran our experiments on a Cray XC30 ma-

chine “Edison” cluster at NERSC.
2
Each node of the Edison contains

dual-socket 12-core Intel Ivy Bridge processors. We chose the Su-

perLU_Dist’s default parameters for running experiments, which

is tuned for factorization phase. We used 4 OpenMP threads per

MPI process with hyperthreading disabled. We compiled our code

with Intel C compiler version 18.0.0 and linked with Intel MKL

version 2017.2.174 for BLAS operations.

5.1.2 Test Matrices. We used amix of planar and non-planar test

matrices coming from different real world applications to evaluate

the performance of 3D sparse triangular solver. The test matrices are

listed in Table 3. The planar matrices come from the discretization

of two-dimensional PDE s2D9pt2048) and circuit analysis (Ecology1).

Five of the six non-planar matrices are from the discretization of 3D

PDEs and one, matrix nlpkkt80, comes from non-linear optimization.

The solve time for 16 right hand sides ranges from .5-10 seconds

on 16 nodes when using the baseline 2D SuperLU_Dist.

5.2 Results on 16 nodes

On 16 nodes of the Edison cluster, the 3D sparse triangular solve

configurations achieve 1.3-4.3× and 0.9-2.9× speedup with respect

to 2D configuration for planar and non-planarmatrices, respectively.

The results appear in Fig. 7, which shows the factorization time

normalized by the baseline 2D SuperLU_Dist for each matrix and

process configuration. Columns correspond to different 3D process

configurations. The leftmost column, Pz = 1, is the 2D algorithm;

subsequent columns correspond to Pz values of 2, 4, 8, and 16.

The factorization time is divided into two components, Tcomp and

Tcomm . The Tcomp is the time spent in local computation on the

critical path of the combined L and U solve, and Tcomm is the

non-overlapped communication and synchronization time.

5.3 Strong Scaling

Finally, we analyze the performance of 3D sparse triangular solver

for different Pxy × Pz combinations for different number of right

hand sides. For this experiment, we choose one planar matrix

2
http://www.nersc.gov/users/computational-systems/edison

http://www.nersc.gov/users/computational-systems/edison

A communication-avoiding 3D sparse triangular solver ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

N
o
rm

a
liz

e
d

 T
im

e
Tcomm Tcomp

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Figure 7: The Triangular Solve performance for 16 right hand sides for various Px × Py × Pz grids on 16 nodes (384 CPU cores) of the Edison system at NERSC.

For each matrix, each column represents a different value of Pz = {1, 2, 4, 8, 16} from left to right. Thus, the leftmost column is the 2D algorithm, and when

moving right, the 2D grids become smaller as Pz increases. For each data set, the time shown is normalized with respect to 2D SuperLU_Dist on 16 nodes.Tcomp
represents the time spent in the local computation on the critical path, whereasTcomm is the non-overlapped time spent in communication and synchronization.

s2D9pt2048 and a non-planar matrix nlpkkt80. Let γ denotes the num-

ber of right hand sides.

γ = # Right hand sides.

We choose three different number of right hand sidesγ ∈ {1, 16, 64}
for this experiment.

Strong scaling for s2D9pt2048. We show the results for s2D9pt2048

on Fig. 8. When γ = 1, the best case 3D configuration is 4.7×

faster than best case 2D process configuration. When γ = 1, each

message sent is short, thus the performance of across different

configuration is limited by the latency costs than the bandwidth

cost. For the 2D process configurations, the performance does not

scale well with increasing grid size. This reflects that despite enough

parallelism post-ordering, block-cyclic data distribution on non-

square grids may not distribute the load evenly. Therefore, the solve-

phase remains predominantly sequential. Since 3D configurations

do not suffer from these limitations, so solve-phase shows some

scalability with increasing Pz .
For γ = 16, the best case 3D configuration is 7× faster than best

case 2D process configuration. In this case, 2D process configura-

tions, the performance is limited by data transfer costs and scales as

O

(
1/
√
P
)
. Again in this case, for a small value of Pz performance

scales linearly and after certain Pz for a given 2D grid size, adding

more 2D grids do not result in any further performance gains.

The case γ = 64 is similar to the case γ = 16. In this case, the

3D configuration is again approximately 7× than the best case 2D

configuration. In this case, we can exploit efficient BLAS-3 calls

effectively for local computation. Moreover, in this case, the fraction

of computation is significantly more than either data transfer or

latency cost. Hence, we achieve higher performance in this case for

any process configuration.

Strong scaling for nlpkkt80. We show the strong scaling results for

nlpkkt80 on Fig. 9 for γ = 1, 16& 64.

When γ = 1, the 3D configuration achieves a best case speed up

of 1.89× over 2D configurations. Similar to the case of s2D9pt2048

when γ = 1 performance of nlpkkt80 is limited by latency costs.

However, since nlpkkt80 is a non-planar matrix, the latency costs

increase more quickly compared to the planar case. For γ = 16 and

γ = 64, the best case 3D configuration achieves a best case speed-up

of 2.3× and 2.6× respectively.

In both cases, γ = 16 and γ = 64, we were able to scale to 24K

cores of Edison, with continued improvement in performance.

5.4 Communication Volume

In Figs. 10 and 11, we show average and maximum per-process

communication volume for s2d9pt2048 and nlpkkt80 on 96 and 384MPI

processes for Pz ∈ {1, 2, 4, 8, 16} and γ = 16. The communication

is divided into communication along xy-plane (shown in blue) and

communication along z dimension (shown in red).

For both the matrices, the average per-process communication

volume V (Figs. 10a and 11a) reduces as
1√
Pz

for different Pz and

constant total number of processes P . Similarly, V decreases as
1√
P

with increasing P and constant Pz . Thus, we see a reduction of

roughly 2× in average per-process communication volume when

we go from P = 96 to P = 384. This agrees with our models for

communication volume described in Eqs. (16) and (25). In all the

cases, communication volume along z-dimension is a tiny fraction

of total communication.

The maximum per-process communication volume for the 2D

algorithm (Figs. 10b and 11b)is 2.3× the average communication

volume, indicating some communication imbalance. The 3D con-

figurations, besides reducing average per-process communication,

also attenuate the communication imbalance, e.g. at 96 processors

Pz = 2 maximum per-process communication is 1.4 and 1.42×

the average per-process communication for s2d9pt2048, and nlpkkt80;

whereas for the 2D algorithm (Pz = 1), the ratio of maximum versus

average per-process communication is 2.2 and 2.3× for s2d9pt2048,

and nlpkkt80, respectively.

6 RELATEDWORK

Complimentary to our approach of reducing communication by

employing 3D process grid, researchers have looked into selective

inversion [11, 19, 22] re-ordering to adapt to structure [23], improv-

ing performance of collective operations [17]. Multifrontal methods

with the so-called subtree-to-subcube mapping [7] also elimination

tree parallelism to improve locality and reduce communication.

One notable example of such algorithm is described by Gupta in

ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Piyush Sao, Ramakrishnan Kannan, Xiaoye Sherry Li, and Richard Vuduc

(a) γ = 1 (b) γ = 16 (c) γ = 64

Figure 8: The triangular solve performance (in Gigaflop/s) for different number of right hand sides (γ) for different Pxy × Pz for planar matrix s2D9pt2048.

(a) γ = 1 (b) γ = 16 (c) γ = 64

Figure 9: The triangular solve performance (in Gigaflop/s) for different number of right hand sides (γ) for different Pxy × Pz for non-planar matrix nlpkkt80.

1e6

1 2 4 8 16 1 2 4 8 16

P=96 P=384

(a) Average per-process communi-

cation

1e6

1 2 4 8 16 1 2 4 8 16

P=96 P=384

(b) Maximum per-process commu-

nication

Figure 10: Per-processs Communication Volume for s2d9pt2048: Fig. 10a
shows the average per-process communication volume for 96(left) and

384(right) MPI processes for different Pz ; Fig. 10b shows the maximum per-

process communication volume for 96(left) and 384(right) MPI processes for

different Pz .

[9] for Cholesky factorization, and they provide an efficient trian-

gular solver for such mapping [14]. Interested readers can find a

more comprehensive discussion on differences in right-looking and

multifrontal methods elsewhere [10, 20].

For dense triangular solve, communication-avoiding algorithm

that uses 3D process grid have been proposed and analyzed in [13,

24].

1e6

1 2 4 8 16 1 2 4 8 16

P=96 P=384

(a) Average per-process communi-

cation

1e6

1 2 4 8 16 1 2 4 8 16

P=96 P=384

(b) Maximum per-process commu-

nication

Figure 11: Per-processs Communication Volume for nlpkkt80: Fig. 11a
shows the average per-process communication volume for 96(left) and

384(right) MPI processes for different Pz ; Fig. 11b shows the maximum per-

process communication volume for 96(left) and 384(right) MPI processes for

different Pz .

In [4, 12], authors have proposed communication avoidingmethod

for constructing Krylov Subspace for iterative solver. In theory,

such techniques can be also applied for iterative solvers that uses

triangular preconditioners. For stationary iterations, researchers

have explored asynchronous iterations to reduce synchronization

costs [2, 3, 5]

A communication-avoiding 3D sparse triangular solver ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

Beyond the case of sparse linear solvers, machine learning algo-

rithms on large and sparse data has renewed interest for communi-

cation efficient algorithm for other sparse matrix operations. This

has lead to communication avoiding and efficient algorithms for

sparse times dense matrix multiplication[16], sparse-sparse matrix

multiplication algorithm has been discussed at [1, 8, 25].

7 CONCLUSION

This paper extends the use of a 3D data structure for sparse LU fac-

torization, described previously [21], to sparse triangular solve. Our

analysis shows that the resulting SpTrs also becomes communication-

avoiding.

Interestingly, a better SpTrs like this one can lead to a better

overall direct solver. At present, SuperLU_Dist3D factors the ma-

trix using a 3D process grid of size Px × Py × Pz and then gathers

the LU factors into a 2D of dimension Px × Py to perform its SpTrs.

By contrast, our new 3D triangular solve eliminates the need for

gathering the L and U factors, enabling the use of all Px×Py×Pz pro-
cessors. Besides mitigating such an inefficiency, the 3D SpTrs is an

algorithmic advancement over the the 2D algorithm that improves

the asymptotic communication. Thus, while this paper focuses on

SpTrs, complete integration into the complete direct solver is an

important next step.

Despite these improvements, the dense triangular solve in ances-

tor subtrees, is not fully parallel, leading to O
(√
n
)
and O

(
n2/3

)
terms in the communication costs for SpTrS3D on 2D and 3D prob-

lems. That does not scale with the number of processors. Since the

dimension of the ancestor subtrees is smaller than the dimension

of the problem by an order of magnitude, a different strategy may

be viable. In particular, it may be practical to compute the inverses

of dense L andU factors of ancestor-subtrees and perform matrix-

vector multiplication with L−1 and U −1 instead of performing a

triangular solve. These inverses can be computed during the process

of factorization without any additional communication-overhead,

and will increase computation and memory at most by a factor of

two. We plan to investigate the feasibility of this approach in the

future.

Prior to this work, much of the work in communication avoiding

sparse and dense linear algebra was limited to BLAS Level-3 style

matrix-matrix type operations. This work presents one of the first

cases known to us of using communication avoiding algorithm and

3D process grid for sparse matrix-vector style operation, or BLAS

Level-2 operations. However, sparse triangular matrices in the di-

rect solver have significantly more non-zeros per-row (e.g. O (loдn),

O

(
n1/3

)
, for 2D and 3D problems respectively) than general sparse

matrices, which typically have O (1) non-zeros per row. Neverthe-

less, in principle, the idea of using nested-dissection-type 3D data

distributions can be extended to other sparse BLAS Level-2 and

Level-3 operations, such as distributed sparse matrix time dense

vector/matrix multiplication, sparse-sparse matrix multiplication,

sparse QR factorization, and graph algorithms such as breadth-first

search and all pair shortest path. Finding the efficacy of nested-

dissection driven 3D data distribution approach for other sparse

problems is another avenue for future investigation.

REFERENCES

[1] Ariful Azad, Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Oded

Schwartz, Sivan Toledo, and Samuel Williams. Exploiting multiple levels of

parallelism in sparse matrix-matrix multiplication. SIAM Journal on Scientific
Computing, 38(6):C624–C651, 2016.

[2] GérardMBaudet. Asynchronous iterativemethods for multiprocessors. Technical

report, CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER

SCIENCE, 1976.

[3] Edmond Chow. Convergence models and surprising results for the asynchronous

Jacobi method. In 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 940–949. IEEE, 2018.

[4] James Demmel, Mark Hoemmen, Marghoob Mohiyuddin, and Katherine Yelick.

Avoiding communication in sparse matrix computations. In Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages
1–12. IEEE, 2008.

[5] Andreas Frommer and Daniel B Szyld. On asynchronous iterations. Journal of
computational and applied mathematics, 123(1-2):201–216, 2000.

[6] A. George. Nested dissection of a regular finite element mesh. SIAM Journal on
Numerical Analysis, 10(2):345–363, 1973.

[7] Alan George, JosephWHLiu, and EsmondNg. Communication results for parallel

sparse cholesky factorization on a hypercube. Parallel Computing, 10(3):287–298,
1989.

[8] Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. Integrated

model, batch and domain parallelism in training neural networks. arXiv preprint
arXiv:1712.04432, 2017.

[9] Anshul Gupta, George Karypis, and Vipin Kumar. Highly scalable parallel al-

gorithms for sparse matrix factorization. IEEE Transactions on Parallel and
Distributed Systems, 8(5):502–520, 1997.

[10] Michael T Heath, Esmond Ng, and BarryW Peyton. Parallel algorithms for sparse

linear systems. SIAM review, 33(3):420–460, 1991.
[11] Michael T Heath and Padma Raghavan. Performance of parallel sparse triangular

solution. In Algorithms for Parallel Processing, pages 289–305. Springer, 1999.
[12] Mark Hoemmen. Communication-avoiding Krylov subspace methods. University

of California, Berkeley, 2010.

[13] Dror Irony and Sivan Toledo. Trading replication for communication in parallel

distributed-memory dense solvers. Parallel Processing Letters, 12(01):79–94, 2002.
[14] Mahesh V Joshi, Anshul Gupta, George Karypis, and Vipin Kumar. A high

performance two dimensional scalable parallel algorithm for solving sparse

triangular systems. In High-Performance Computing, 1997. Proceedings. Fourth
International Conference on, pages 137–143. IEEE, 1997.

[15] George Karypis and Vipin Kumar. Family of graph and hypergraph partitioning

software. http://glaros.dtc.umn.edu/gkhome/views/metis. Accessed: 2014-01-26.

[16] Penporn Koanantakool, Ariful Azad, Aydin Buluç, Dmitriy Morozov, Sang-Yun

Oh, Leonid Oliker, and Katherine Yelick. Communication-avoiding parallel

sparse-dense matrix-matrix multiplication. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 842–853. IEEE, 2016.

[17] Yang Liu, Mathias Jacquelin, Pieter Ghysels, and Xiaoye S Li. Highly scalable

distributed-memory sparse triangular solution algorithms. In 2018 Proceedings of
the Seventh SIAM Workshop on Combinatorial Scientific Computing, pages 87–96.
SIAM, 2018.

[18] François Pellegrini and Jean Roman. Scotch: A software package for static

mapping by dual recursive bipartitioning of process and architecture graphs. In

International Conference on High-Performance Computing and Networking, pages
493–498. Springer, 1996.

[19] Padma Raghavan. Efficient parallel sparse triangular solution using selective

inversion. Parallel Processing Letters, 8(01):29–40, 1998.
[20] Edward Rothberg. Exploiting the memory hierarchy in sequential and parallel

sparse Cholesky factorization. Technical report, Stanford University, Department

of Computer Science, 1992.

[21] Piyush Sao, Xiaoye S. Li, and Richard Vuduc. A communication-avoiding 3D LU

factorization algorithm for sparsematrices. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Vancouver, BC, Canada,
May 2018.

[22] Keita Teranishi, Padma Raghavan, and Esmond Ng. A new data-mapping scheme

for latency-tolerant distributed sparse triangular solution. In Supercomputing,
ACM/IEEE 2002 Conference, pages 27–27. IEEE, 2002.

[23] Ehsan Totoni, Michael THeath, and Laxmikant V Kale. Structure-adaptive parallel

solution of sparse triangular linear systems. Parallel Computing, 40(9):454–470,
2014.

[24] Tobias Wicky, Edgar Solomonik, and Torsten Hoefler. Communication-avoiding

parallel algorithms for solving triangular systems of linear equations. In Parallel
and Distributed Processing Symposium (IPDPS), 2017 IEEE International, pages
678–687. IEEE, 2017.

[25] Carl Yang, Aydın Buluç, and John D Owens. Design principles for sparse matrix

multiplication on the gpu. In European Conference on Parallel Processing, pages
672–687. Springer, 2018.

http://glaros.dtc.umn.edu/gkhome/views/metis

	Abstract
	1 Introduction
	2 Background
	2.1 Sparse Direct Solver
	2.2 Triangular Systems
	2.3 Dependency in Sparse Triangular Solver
	2.4 Parallel Sparse Triangular Solve
	2.5 3D Sparse LU factorization

	3 3D Triangular Solver
	3.1 33 block sparse case
	3.2 General Case

	4 Communication Analysis
	4.1 Dense Triangular Solve on 2D Process Grid
	4.2 Planar Sparse Matrices
	4.3 Non-planar Sparse Matrices

	5 Results
	5.1 Experimental Set-up
	5.2 Results on 16 nodes
	5.3 Strong Scaling
	5.4 Communication Volume

	6 Related Work
	7 Conclusion
	References

