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ABSTRACT

Weshowhowtoexploitgraphsparsity in theFloyd-Warshall
algorithmfor theall-pairs shortestpath (Apsp)problem.Floyd-
Warshall is anattractive choice forApsponhigh-performing
systems due to its structural similarity to solving dense linear
systems andmatrixmultiplication. However, if sparsity of the
input graph is not properly exploited, Floyd-Warshall will
perform unnecessary asymptotic work and thus may not be a
suitablechoice formany inputgraphs.Toovercomethis limita-
tion, thekey idea inour approach is touse theknownalgebraic
relationship between Floyd-Warshall and Gaussian elimi-
nation, and import several algorithmic techniques fromsparse
Cholesky factorization, namely,fill-in reducingordering, sym-
bolic analysis, supernodal traversal, and elimination tree par-
allelism.When combined, these techniques reduce computa-
tion, improve locality and enhance parallelism.We implement
these ideas in an efficient shared memory parallel prototype
that is orders of magnitude faster than an efficient multi-
threadedbaselineFloyd-Warshall thatdoesnot exploit spar-
sity. Our experiments suggest that the Floyd-Warshall algo-
rithm can compete with Dijkstra’s algorithm (the algorithmic
core of Johnson’s algorithm) for several classes sparse graphs.
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1 INTRODUCTION

In this paper, we improve the performance of the classic
Floyd-Warshall algorithm (Floyd-Warshall) for the all-pairs
shortest path (Apsp) problem on shared memory parallel ma-
chines for sparse graphs. Floyd-Warshall is appropriate
when the graph is dense or nearly so, in which case one can
achieve good parallel scalability and high-performance by ex-
ploiting the algebraic connection between Floyd-Warshall
and the Gaussian elimination process for solving linear sys-
tems [3, 6, 12]. Through that lens, Floyd-Warshall reduces
to matrix-multiplication-like (level-3 BLAS-like) operations,
thereby enabling fast computations of Apsp on, for instance,
GPUs [5] or distributed memory platforms [38]. But if the
graph is sparse, then the implementation of Floyd-Warshall
must change. Our key insight, similar to matrix multiplication,

is that the full body of algorithmic techniques from sparse direct

solvers can be applied [9] for Floyd-Warshall on sparse graphs.
Formally,weconsiderApsponaweightedundirectedgraph

G = (V ,E) with n = |V | vertices and m = |E | edges. The
weightsmaybenegative, butwepreclude cycleswhose sumof
weights is negative. If, furthermore, the graph is dense, so that
m=O

(
n2
)
, then onemay use the Floyd-Warshall algorithm.

Its overall algorithmic structure consists of three nested-loops
(Algorithm 1), each iterating over all vertices, so its sequential
complexity is O

(
n3
)
operations. Throughout, it updates a ma-

trix {Dist}i j that stores the length of the current shortest path
between any two verticesvi andvj ; this distance is initialized
to∞ if no path has yet been discovered. Floyd-Warshall
maintains, at each iteration k , the invariant that the {Dist}i j
is minimumwith at most k vertices as intermediaries. Hence,
as shown in Fig. 1, Floyd-Warshall discovers more paths
between vertices and the number of infinite {Dist}i j entries
decreases.
For sparse graphs,m=O(n) and we prefer methods with

better asymptotic scaling. One option is Johnson’s algorithm,
which scales like O

(
n2logn+nm

)
[21]. However, Johnson’s
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Figure 1: In Floyd-Warshall algorithm, the distance matrix

which is initially sparse, quickly become dense if vertex ordering is

not optimal

algorithm cannot effectively use the features of modern com-
puter architecture such as long SIMD vector units or cache,
and therefore, it underutilizes modern high-performing com-
puting systems. It is natural to ask whether we can exploit
sparsity in Floyd-Warshall to reduce its asymptotic com-
plexity while retaining its parallel-scalability.

Ourapproach todoingsoderives fromtheknowntechnique
of vertex reordering [26, 33]. During the execution of Floyd-
Warshall, infinite valuesof {Dist}i j will play the roleof “zero
entries” in sparse numerical linear algebra, and certain oper-
ations on infinite values may be avoided. By choosing the op-
timal vertex order of the outer-loop of Floyd-Warshall, we
can defer replacement of infinite values for more iterations of
the algorithm. The so-called fill-in reducing orderings used in,
for instance, sparse Cholesky factorization to keep the factor
matrix sparse, arealsooptimal in thecaseof Floyd-Warshall.
If a graph has a minimal vertex separator of size S that par-
titions the graph into two components of roughly equal size,
then the use of a fill-in reducing ordering in Floyd-Warshall
will incur only O

(
n2S+S3

)
operations. This can be asymptot-

ically lower than O
(
n3
)
. For instance, in a planar graph like

a road network, the separator size is S = O
(√
n
)
; therefore,

Floyd-Warshallwould incurO
(
n2.5

)
operations.Even in the

case of graphs with S =O(n), using the fill-in reducing order-
ing, a constant-factor reduction in the number of operations
can be substantial. Therefore, using an optimal reordering is
necessary for goodperformance of a sparse Floyd-Warshall.

The use of fill-reducing orderings poses several challenges.
First, onemust design a careful data structure that can accom-
modate new entries in {Dist}i j . Secondly, the data structure
should also support blocked operations, to effectively use the
memory hierarchies in modern architectures [17]. These is-
sues motivate our supernodal Floyd-Warshall, or SuperFw,
inspired by supernodal sparse Cholesky factorization [9]. In
the supernodal approach, we group nodes having a similar ad-
jacency structure into supernodes, and operate on supernodes
instead of individual vertices, thereby leading to a blocked
algorithm. To accommodate new entries in the {Dist}i j , we
use symbolic analysis, which can efficiently extract the fill-in
structure of the {Dist}i j matrix. We perform symbolic anal-
ysis and extract supernodal structure to set up a supernodal
block sparse matrix, which allows blocked operations while

Table 1: List of symbols used

Symbol type Symbol Description

x ⊕y min(x,y)
x ⊗y x+y
P×Q Cartesian Product of non-empty sets P,Q

n Dimension of the matrixA
nb Dimension of every block of Dist matrix

Graphs
G(V ,E) Input GraphG withV vertices and E edges
Dist Distance matrix

E Elimination tree ofA
S Top level separator of ESupernode
C1, C2 Children etrees of E
A(a) set of ancestors of a supernode a
D(a) set of descendents of the supernode a

exploiting the sparsity. Finally, the operation and task depen-
dencies in SuperFw can be represented by an elimination tree.
Its structure indicates what operations may execute concur-
rently and, therefore, guides parallelism.
Applying these ideas from sparse Cholesky factorization

results in an efficient shared-memory parallel SuperFw im-
plementation. We show that it can in practice be orders of
magnitude faster than an efficient implementation of Floyd-
Warshall that does not exploit the sparsity (Section 5). More-
over, despite performing asymptotically more operations, Su-
perFw’s better match to modern hardware can make it com-
parable to or even faster than Johnson’s algorithm for many
sparse graphs, as well as more scalable. Finally, given the rich
literature for optimizing sparse Cholesky high-performance
systems,we believemany of these techniques are also applica-
ble to graph path problems. We discuss potential scenarios in
which graph path analysis would benefit from optimization
techniques in linear systems, and vice versa.

2 BACKGROUND

Many path problems in graph analysis can be described suc-
cinctly in a semiring algebra. We review this formalism and
the resulting classical and blocked Floyd-Warshall algo-
rithms for Apsp, below.

Notation and terminology. Let G = {V ,E,W } be an undi-
rected weighted graph with a vertex setV containing n= |V |
vertices or nodes, edge set E withm= |E | edges, and weights
W , defined below. Denote the i-th vertex byvi and an edge
betweenvi andvj by ei, j . The weights are represented byW ,
a sparse symmetric matrix whose entrywi, j denotes the dis-
tance between verticesvi andvj ifei, j ∈E; otherwise,wi, j =∞.

During the computation of Apsp, Floyd-Warshall main-
tains and updates a 2-D array of distances, Dist. Each entry
Dist[i,j] holds the current shortest distance betweenvi and
vj discovered so far, with its value at termination of the al-
gorithm being the shortest such distance. We will assume
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for simplicity that the graphG consists of a single connected
component, in which case the Dist eventually becomes fully
dense; however, our implementation will work when there
are multiple connected components.

2.1 Classical Floyd-Warshall algorithm

Algorithm 1 Floyd-Warshall algorithm for Apsp
1: function FloydWarshall(G= (V ,E)):
2: Let n←dim(V )

3: Let Dist[i,j]=

{
wi, j if(i,j) ∈E
∞ otherwise

4: for k= {1, 2...,n} do:
5: for i= {1, 2...,n} do:
6: for j= {1, 2...,n} do:
7: Dist[i,j]=min{Dist[i,j], Dist[i,k]+Dist[k,j]}
8: Return Dist
Floyd-Warshall uses a dynamic programming approach

to computing Apsp, as shown in Algorithm 1. It initializes
Dist with the input weightsW . Then, in the k-th iteration, it
checks for all pairs of verticesvi andvj if there is a shorterpath
between them via the intermediate vertex vk . If so, Floyd-
Warshall updates Dist[i,j]. Therefore, Dist[i,j] after k steps,
which we denote by Distk (i,j), may be defined recursively as

Distk [i,j]←min
{
Distk−1[i,j],Distk−1[i,k]+Distk−1[k,j]

}
.

This computation may be done in place, with Distk [i,j] over-
writingDistk−1[i,j]. It can also be shown that afterk iterations,
Distk [i,j] is the shortest of all paths between vi and vj that
use only vertices from the set {v1,v2,...,vk }.1 Therefore, at
the end of then-th iteration Distn[i,j]will be the length of the
shortest path betweenvi andvj .

2.2 Min-PlusMatrixMultiplication

Apsp may be understood algebraically as computing the ma-
trix closure of the weight matrix,W , defined over the tropical
semiring [12]. Inmore basic terms, let ⊕ and ⊗ denote the two
binary scalar operators

x⊕y := min(x ,y)
x⊗y := x+y,

wherex andy are real valuesor∞.Next, consider twomatrices
A∈Rm×k andB ∈Rk×n . TheMin-Plus productC ofA andB is

Ci j←

⊕∑
k

Aik ⊗Bk j =min
k

(
Aik+Bk j

)
.

This product is the analogue of matrix-matrix multipli-
cation over the reals. To see its connection to graph path
analysis, consider an example of the complete tripartite graph
1This fact holds only if there are no cycles of negative weight sum. In the
presence of negative cycles, the minimum path length between any two
vertices in the cycle will be∞.

(a) MinPlus productC =A⊗B (b) Substeps of Algorithm 2

Figure 2: Fig. 2a shows the shortest path between source vertices

and destination vertices that goes through bridge vertices (see Sec-

tion 2.2). Fig. 2b illustrates substeps of Apsp on the diagonal sub-

graph, panel (block row and column) update, and outer-product up-

date of the trailing subgraph.

in Fig. 2a. This graph has three disjoint subsets ofm+n+p
vertices:m source vertices, {s1,s2···sm}; n destination vertices,
{d1,d2···dn}; and p bridge vertices,

{
b1,b2···bp

}
. Every source

and destination connects to every bridge, but no vertices
within each subset are adjacent. LetAik denotes the weight
of the edge (si ,bk ) and let Bk j be the weight of (bk ,dj ). Then
Aik ⊗Bk j =Aik+Bk j denotes the length of path from si to dj
viabk . Thus, the shortest path between si anddj via anyvertex
bk is the minimum ofAik ⊗Bk j over all k . This interpretation
of the Min-Plus product helps to understand the following
blocked version of Floyd-Warshall (Algorithm 2).

2.3 Blocked Floyd-Warshall algorithm

Suppose we divide Dist into nb × nb blocks, each of size
b×b (i.e., nb = n

b ). Let Ai j denote the (i,j) block of A, where
1 ≤ i, j ≤ nb . Then a blocked version of Floyd-Warshall,
called BlockedFw in Algorithm 2, can carry out the same
Apsp computation as Floyd-Warshall in the following three
steps, as illustrated in Fig. 2b:
• Diagonal Update: Perform the classic Floyd-Warshall
algorithm on a diagonal block,Akk .
• Panel Update:Update thek-th block row and column. For
any blockA(k,j), j,k in the block row, the update is a Min-
Plus multiply withAkk from the left, and for blockA(i,k)
on the k-th block column is Min-Plus multiply withAkk
from right, i.e.,

A(k,j)←A(k,j)⊕ A(k,k)⊗A(k,j) j,k

A(i,k)←A(i,k)⊕ A(i,k)⊗A(k,k) i,k

Here, ⊕ denotes element-wise application of the corre-
sponding scalar operator, and ⊗ denotesMin-Plus product.
• MinPlus Outer Product: Perform the outer product of k-
thblock rowandblockcolumn,andupdateall the remaining
blocks of matrixA

A(i,j)←A(i,j)⊕ A(i,k)⊗A(k,j) i,j,k .
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Figure 3: An illustration of BlockedFw on a 3 × 3 block-

partitionedmatrix.

This step is analogous to a Schur-complement update in LU
or Cholesky factorization.

Algorithm 2 A blocked version of Floyd-Warshall algo-
rithm for Apsp
1: function BlockedFloydWarshall(A):
2: for k= {1, 2...,nb } do:

Diagonal Update

3: A(k,k)←Floyd-Warshall(A(k,k))
Panel Update

4: A(k,:)←A(k,:)
⊕

A(k,k)⊗A(k,:)
5: A(:,k)←A(:,k)

⊕
A(:,k)⊗A(k,k)

MinPlus Outer Product

6: for i= {1, 2...,nb }, i,k do:
7: for j= {1, 2...,nb }, j,k do:
8: A(i,j)←A(i,j)

⊕
A(i,k)⊗A(k,j)

9: ReturnA

3 SUPERNODAL FLOYD-WARSHALL

When the Dist matrix is sparse, we can use ideas from sparse
direct solvers to transform theBlockedFwalgorithm intoone
that can maintain and exploit that sparsity. There are three
critical concepts: (i) reordering, which helps to control the dy-
namically evolving sparsity structure of Dist, thereby control-
ling the amount of asymptotic work incurred by BlockedFw;
(ii) supernodes, which help manage and organize this struc-
ture, thereby exploiting locality; and (iii) the elimination tree,
which helps express the operational and data dependencies,
thereby exposing parallelism.

3.1 Effect of ordering on BlockedFw

When running BlockedFw, the sparsity of Dist in any given
iteration determines how that sparsity will change in subse-
quent iterations. We illustrate these dependencies in Fig. 3.
There, we show a 3×3 block-partitioned sparse matrix with
a particular sparsity pattern in which theA21 andA12 blocks
are “empty,” meaning that all the entries in them are infinity.

The first iteration of BlockedFw, i.e., k=1, performs a Di-
agUpdate on theA11 block followed by PanelUpdate on the
blockA13 andA31. SinceA12 andA21 are empty, they remain
empty after the PanelUpdate step. In theOuterUpdate step,
the blocksA22,A23, andA32 remain unchanged since any up-
dates thereto depend onA12 orA21, which are empty.We only
perform an update on the blockA33 as follows:

A33←A33⊕ A31⊗A13.

(a) A 25×25 sparsematrix (b) Non-zero structure of the

permutedmatrix

(c) eliminationtree (d) supernodal matrix

Figure 4: NestedDissection (ND) ona 5×5 grid graph.Under anND

ordering, we find a graph separator (highlighted in yellow Fig. 4a),

and label the nodes in the separator in the end. Fig. 4b shows the ad-

jacency matrix of the graph permuted in ND ordering. The elimina-

tion tree (Fig. 4c) captures thedependency ineliminationofdifferent

nodes. The Fig. 4d shows the final block sparsematrix obtained after

steps described in Sections 3.2 and 3.3.

Similarly, when k = 2, we perform DiagUpdate on the
block A22, and PanelUpdate on A23 and A32, and we only
perform update on the blockA33

A33←A33⊕ A32⊗A23.

In the 3rd iteration, we perform DiagUpdate on the block
A33, PanelUpdate from the left onA31 andA32, and from the
right onA23 andA13. Since none of the third row and column
blocks are empty, we update all the remaining blocks in the
OuterUpdate step. The blocksA12 andA21 which had been
empty so far finally become full blocks:

A12←A13⊗A32

A21←A23⊗A31.

This example reveals two essential aspects of BlockedFw.
(1) For this particular example, the block sparsity is main-

tained until the last iteration. That is, only when k=3
does execution of the OuterUpdate step require an
update on the complete matrix in which empty blocks
(of all∞ values) become finite. This change from infi-
nite to finite values is the graph-path analog of nonzero
fill-in in sparse linear algebra.
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(2) The OuterUpdate step in the first iteration does not
involve updating any block of second block row or col-
umn, i.e. A22,A23 and A23, and vice versa. Therefore,
the DiagUpdate and PanelUpdate of iterations k=1
and k=2 do not have any data dependencies, and may
therefore proceed in parallel. However, both iterations
update theA33 block. Nevertheless, sinceMin-PlusMa-
trix Addition is associative, the updates from the two
iterations can be done in any order. Thus, the finalA33
after the two updates will be given by

A33←A33⊕ A32⊗A23⊕ A31⊗A13.

This dependency between operations in iteration k=3
on those from k=1 and k=2 can be described by a tree,
as shown in Fig. 3 (last).

3.2 Nested-Dissection Ordering

From the theory and practice of sparse matrix reordering, it is
well understood that “arrow” patterns for Gaussian elimina-
tion work well in reducing fill-in. Indeed, we can reorder the
adjacency matrix of the graphG to obtain block-arrow struc-
ture through a process known as nested-dissection (ND) [14],
which graph partitioning tools like Metis or Scotch can be
used to obtain [22, 31].

The ND process may be summarized as follows. Our initial
goal is to compute a vertex separator S ⊂V that partitions the
vertices of the graphG into three disjoints sets,V =C1∪S∪C2,
so that following holds:

(1) there are no edges between any vertex in C1 to any
vertex inC2;

(2) |C1 | and |C2 | are roughly equal; and
(3) S is as small as possible.

Using this partition, we can reorder the adjacencymatrixA
so that the verticeswithin each setC1 andC2 have consecutive
indices; and vertices in S have a higher index than any vertex
inC1 andC2. For example, in Fig. 4, we show a grid graphG,
a separator, its adjacency matrix, and the 3×3 block-arrow
matrix obtained by reordering the matrix as described above.
This process may be performed recursively withinC1 andC2
to obtain a more fine-grained ordering for the entire matrix.

3.3 Supernodal structure extraction

The goal of this step is to obtain a blocked sparse matrix as
shown in Fig. 4b thatwe shall call supernodalmatrix, from the
permutedmatrix usingNDordering (shown in Fig. 4d); and to
calculate the so-called elimination tree (shown in Fig. 4c) that
guides the scheduling and parallelism of our algorithm.We
borrow the so-called symbolic analysis used in sparse direct
solvers to do so.

Symbolic analysis: Symbolic analysis is the calculation
of the exact fill-in structure in sparse Cholesky factorization.
It enables preallocation of memory for any fill-ins.

Elimination tree: Recall the 3 × 3 block sparse matrix
shown in Fig. 3. Elimination can proceed in either {1,2,3}
or {2,1,3} order while maintaining low fill. Such an elimi-
nation ordering can be described using a tree Fig. 3, called
elimination tree or eTree. The eTree is also calculated during
the symbolic analysis step. ND ordering leads to a multilevel
eTree as shown in Fig. 4c.
Supernodes: A supernode is a collection of vertices or

nodes that have a similar fill-in structure. When that occurs,
these verticesmay be grouped together to obtain block-sparse
matrix. The supernodal partition is obtained by perform-
ing vertex contraction on the eTree, yielding a supernodal
eTree. For subsequent discussion, eTree refers to a supern-
odal eTree.

Ancestor and descendant supernodes: Further, we de-
fine the ancestors of a supernode as the set of supernodes that
consist of its parent, the parent of parent, and so on. Similarly,
if supernode a is an ancestor of another supernode b, then
we say b is a descendant of a. In the eTree representation,
the ancestors of a node occupy a higher spot than that node
and descendants appear below it. We denote ancestors and
descendants of a supernodev byA(v) andD(v), respectively.

3.4 The SuperFw algorithm

Algorithm 3 The SuperFw algorithm
1: ns := Number of supernodes
2: function SuperFw(G= (V ,E)):
3: for k= {1, 2...,ns } do:

Diagonal Update

4: A(k,k)←Floyd-Warshall(A(k,k))
Panel Update

5: for i ∈A(k)∪D(k) do
6: A(i,k)←A(i,k)⊕ A(i,k)⊗A(k,k)
7: A(k,i)←A(k,i)⊕ A(k,k)⊗A(k,i)

MinPlus Outer Product

8: for (i,j) ∈ {A(k)∪D(k)}×{A(k)∪D(k)} do:
9: A(i,j)←A(i,j)⊕ A(i,k)⊗A(k,j)

Algorithm 3 describes the sequential SuperFw algorithm.
At a high-level, it performs Floyd-Warshall iterations on
the supernodalmatrix. However, this algorithmexhibits some
subtle behaviors.
Consider the elimination of a supernode v . Its elimina-

tion only requires updating blocks corresponding toA(v),
D(v), andv itself. The DiagUpdate and PanelUpdate are
performed in place. The regions updated in theOuterUpdate
step can be divided into four subsets:

(1) D(v)×D(v) (top-left region, relative to a),
(2) D(v)×A(v) (top-right region),
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(a) Parallel elimination of su-

pernodes 2 and 5

(b) The eTree view

Figure 5: Parallel OuterUpdate of two cousin supernodes. The

regions thatupdated in theOuterUpdatestepof eliminationof sec-

ond and fifth supernode are highlighted under blue and green trans-

parency, respectively.

(3) A(v)×D(v) (bottom-left region), and
(4) A(v)×A(v) (bottom-right region).

Theese different regions associated with the elimination of a
node appear in Fig. 5a. In conventionalCholesky factorization,
we only need to updateA(v)×A(v), also called the trailing
matrix. This operation involves only sparse blocks, and it
updates the supernodal block sparse matrix. The OuterUp-
date onD(v)×D(v),D(v)×A(v) andA(v)×D(v) directly
updates the distance matrix, which is dense. At the end of the
computation, the supernodal matrix contains the semiring

equivalent of Cholesky factors and the dense distance matrix
contains final pairwise lengths of all shortest paths.

3.5 Parallel SuperFw algorithm

Recall from the baseline BlockedFw algorithm that, in the
k-th OuterUpdate step, all the updates on all theAi j blocks
could be performed in parallel. Relative to that available par-
allelism, the enhancement in SuperFw comes from exploiting
the eTree.

eTree guided scheduling and parallelism. We say a supern-
ode a is a cousin of a supernode b if D(a) ∩ D(b) = ∅. For
instance any two leaf nodes in the eTree are cousins. The
DiagUpdate and PanelUpdate of any two cousin nodes can
be done in parallel as they operate on distinct regions of the
matrix. Next, consider the dependencies in theOuterUpdate
step of two cousins. Recall the four sets of blocks updated in
the OuterUpdate:D(v)×D(v),D(v)×A(v),A(v)×D(v),
andA(v)×A(v). Any blockA(i,j) in the first three subsets
will have at least one of i and j inD(v). If two supernodesv
andu are cousins, then by definitionD(v)∩D(u)=∅. There-
fore, the first three subsets of OuterUpdate of two cousin
supernodes are disjoint and can be updated concurrently. But
A(v)×A(v) andA(u)×A(u) can have some common blocks.
Therefore, those blocks are updated sequentially.

To expose maximum parallelism, we perform a bottom-up
topological sort of the eTree, which partitions the eTree into
levels as shown in Fig. 5b. Since all the supernodes in the given
level are cousins to one other, their elimination can be done in
parallel. We refer to such eTree-guided scheduling as eTree
parallelism.

4 ASYMPTOTICANALYSIS

Table 2: Asymptotic work(W ), depth(D) and

concurrency(C)

Algorithm W (n)† D(n)† C(n)‡

BlockedFw O
(
n3) O(n) O

(
n2)

SuperFw O
(
n2 |S |

)
O
(
|S |log2n

)
O

(
n2

log2n

)
Dijkstra O

(
n2logn+nm

)
O(nlogn+m) O(n)

PathDoubling [40] O
(
n3) O(logn) O

(
n3
logn

)
♦ n: #vertices,m: #edges, |S |: size of the top level separator.
† lower is better. ‡ higher is better.

Weuse thework-depthmodel[4] toquantify theasymptotic
sequential work and the available parallelism for different
algorithms. The work is the total number of operations per-
formed and the depth is the length of the longest sequential
chain of data dependencies. Formally, ifT (n,p) denotes the
time of execution of a parallel algorithm onp processors for a
problem of sizen, thenworkW (n) and depthD(n) are defined
as follows:

W (n)=T (n,p=1) (1)
D(n)= lim

p→∞
T (n,p) (2)

UsingW (n) and D(n), the average available parallelism, or
concurrencyC(n), is defined as

C(n)=
W (n)

D(n)
.

The concurrencyC(n) indicates the average number of pro-
cessors an algorithm can fruitfully utilize.

Weassumeaparallel randomaccessmemory(PRAM)model [1]
of parallel execution that supports concurrent read exclusive
write (CREW). In this model, all processors can access a mem-
ory location simultaneously, and only one processor canwrite
at a location at a time. In terms of their depth costs, perform-
ing xi←αyi+β has a depth of O(1); and reduction operation
y←

∑
i=1:nxi has a depth of O(logn).

4.1 AsymptoticWork

If |S | is the size of the top-level separator of graphG with n
vertices, then the cost of running SuperFw is O

(
n2 |S |

)
. The

asymptotic cost reduction fromO
(
n3
)
toO

(
n2 |S |

)
comes from

the ND reordering. The asymptotic cost of ND reordering and
other equivalent reordering schemes can be found elsewhere
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aswell [26].Given the algebraic equivalence of SuperFwwith
sparse Gaussian elimination (Cholesky for the symmetric or
undirected case), its costs are the same; here, we sketch the
derivation of that cost and its implication for SuperFw below.

LetV = {C1∪S∪C2} be a nested dissection vertex partition-
ing of the graphG = (V ,E). Let |S |, |C1 |, and |C2 | denote the
number of vertices in each set. In the following discussion, we
assume the following. First, the separator is small, i.e., |S |≪n
and the partition is balanced, i.e., |C1 |= |C2 |. Therefore,

|C1 |= |C2 | ≈n/2.

Furtherweassume that size of separators as a functionof num-
ber of vertices in the graph denoted by S(n), is monotonic, i.e.:

n1>n2 =⇒ S(n1)>S(n2).

Consider the elimination of the separator S , which is the last
iteration of SuperFw. It involves three steps: DiagUpdate,
PanelUpdate and OuterUpdate. The cost of DiagUpdate
is equal to the cost of running Floyd-Warshall on a graph
with |S | vertices, or O

(
|S |3

)
. The PanelUpdate step involves

Min-Plus matrix multiplication of the two separator panels
of size |S | × (n− |S |)) with a |S | × |S | matrix; thus, its cost is
|S |2×(n−|S |)). The OuterUpdate step involves computing
outer product of the two panels; (n−|S |)×|S | and |S |×(n−|S |);
thus, its cost is (n−|S |)2×|S |. Since |S |≪n, the outer product
cost will dominate and so the total cost of elimination of the
top level separator is given by

W 0(n)≈n2S(n).

Here zero denotes the level of separator from the top, i.e., root
has a level zero and leaves have level h − 1, where h is the
height of the separator tree.

Now consider the elimination of the two first level separa-
tors in the eTree. Again, OuterUpdate dominates the cost of
elimination. Recalling our assumption that the partitions are
approximately balanced, then OuterUpdate involves com-
putingouter productwhose dimensions are (n/2+ |S(n)/2|))×
|S(n/2)| and |S(n/2)|×(n/2+ |S(n)/2|), so that the cost of elim-
ination of the two first level separator is

W 1(n)≈2
(n
2

)2
S
(n
2

)
=
n2

2
S
(n
2

)
.

Similarly, the total cost of elimination of all the i-th level
separator is given by

W i (n)≈2i
( n
2i
)2
S
( n
2i
)
=
n2

2i
S
( n
2i
)
.

There are approximately logn levels of the separator. There-
fore, summing over all levels yields the final cost,

W (n)≈

logn∑
i=0

n2

2i
S
( n
2i
)
=n2S(n)

logn∑
i=0

S
(
n/2i

)
2iS(n)

.

SinceS(n) ismonotonic, so S(n/2i )
S (n) ≤ 2, thecoefficientofn2S(n)

inW (n) is ≤
∑logn

i=0 1/2
i ≤ 1. Hence, the total work of SuperFw

on a graph with n vertices is given by

W (n)=n2 |S |. (3)

4.2 Asymptotic Depth

The depth of the baseline Floyd-Warshall algorithm isO(n)
since each of n vertices of the graph is eliminated sequen-
tially. Within the elimination of a single vertex, DiagUpdate,
PanelUpdate and OuterUpdate will each have depth O(1)
using O

(
n2
)
processors. If the SuperFw does use the etree

parallelism and perform sequential elimination of vertex,
then it will have the same depth O(n) as the baseline Floyd-
Warshall.

To calculate the depth of SuperFwwith etree parallelism,
we consider the elimination of top-level separator first. The
elimination of top-level separator uses the blocked Floyd-
Warshall algorithm, thus its depth is S(n). In the first level,
we eliminate two separators each of size ≈S(n/2) in parallel.

For the elimination of two separators in the first level, we
can performDiagUpdate, PanelUpdate, and OuterUpdate
involving regions ofA×D, D×A and D×D, in parallel.
However, for performing OuterUpdate involving A×A,
we may update the same block from OuterUpdate step of
either separator. In general, in the elimination of separators
of the i-th level, multiple processes might try to update the
same block inA×A. Notice that the update is a reduction
operation, hence ifp process try to update the same block, we
can perform the update using tree-reduction with a depth of
log2p−1=O(logp). Since any block inA×A will be updated
by at most O

(
2i
)
processors at level i , hence the depth of up-

dating any block in OuterUpdate of update of any block in
theA×A will be at most log(2i )=i . Therefore, the depth of
performing elimination in the i-the level of the separator tree
will be iS(n/2i ). So the total depth of performing SuperFw is
given by :

D(n)=

logn∑
i=0

iS(n/2i )≤
logn∑
i=0

lognS(n)=S(n)log2n (4)

Therefore, the depth of performing SuperFwwith etree par-
allelism is O

(
S(n)log2n

)
or just O

(
|S |log2n

)
. Verily, we can

express the available parallelism or concurrency as :

C(n)=
W (n)

D(n)
=O

(
n2

log2n

)
(5)

4.3 Discussion

In Table 2, we summarize the work, depth, and concurrency
of SuperFw and BlockedFw, along with two notable gen-
eral Apsp algorithms a) Dijkstra which is work optimal for
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Table 3: Test sparsematrices used in experiments

Name Source n nnz
n

n
|S |

USpowerGrid Power network 4.9e3 2.66 6.2e2
OPF_6000 Power network 2.9e4 9.1 1.4e3
nd6k 3D 1.8e4 383 5.8
oilpan structural 7.3e4 29.1 1.7e2
finan512 Optimization 7.5e4 7.9 1.5e3
net4-1 Optimization 8.8e4 28 2.9e3
c-42 Optimization 1.0e4 10.58 1.5e2
c-69 Optimization 6.7e4 9.24 2.0e2
lpl1 Optimization 3.2e4 10 4.8e2
onera_dual Structural 8.5e4 4.9 1.5e2
email-Enron SNAP 3.7e4 9.9 52

delaunay_n14 DIMACS10 1.6e4 5.99 1.7e2
delaunay_n16 DIMACS10 6.5e4 5.99 1.7e2
fe_sphere DIMACS10 1.6e4 5.99 8.5e1
luxembourg_osm DIMACS10 1.1e5 2.1 6.7e3
fe_tooth DIMACS10 7.8e4 11.6 88
wing DIMACS10 6.2e4 3.9 1.0e2
t60k DIMACS10 6.0e4 3.0 1.1e3

G67 Random 1e4 4 5.0e1
EB_8192_256 Barabasi - Albert 8.1e3 256 2.5e0
EB_16384_64 Barabasi - Albert 1.63e4 64 2.6e0
rgg2d_14 RandomGeometric 1.63e4 128.17 1.6e1
rgg3d_14 RandomGeometric 1.63e4 910 2.57
hypercube_14 hypercube Graph 1.6e4 28 5.0e0

sparse graphs but offers only O(n) concurrency; and b) Path-
Doubling is a known theoretical variant of Floyd-Warshall
algorithmwith best knownparallel complexity. Per Eq. (3), Su-
perFw lowers the work complexity of Floyd-Warshall by a
factorofO

(
n

S (n)

)
,while also reducing theasymptotic depthby

O

(
n

S (n)log2n

)
. Hence SuperFw improves the asymptotic work

complexitywith little exacerbation of available parallelism. In
contrast, Dijkstra’s algorithm has a lower asymptotic work
complexity, but it has a concurrency of O(n). Further, Dijk-
stra uses the priority queue data structure, which may not
effectively utilize modern architectural features such as on
chip cache memory and large SIMD units found onmodern
processors.

Per Eq. (3), a small vertex separator implies an asymptotic
reduction in the cost of SuperFw relative to the naïve (dense)
costofO

(
n3
)
. Theclassofgraphswith small separators largely

falls into thecategoryofgeometric graphs, aswell asadditional
classes of graphs derived from geometric graphs.Informally,
a geometric graph is one that can be embedded into a d≪n-
dimensional grid [10]. For a d-dimensional grid graph, there
exists a separator of size O

(
n1−

1
d

)
. The best-known example

is a planar graph,whichhas a separator of sizeO
(√
n
)
[27]. Ad-

ditionally, there are graphs with O(n) separators also known
as expander graphs [20].Many randomgraphs tend tobecome
expanders as number of edges increase.

5 RESULTS

We have implemented a shared memory multicore version of
the SuperFw algorithm using OpenMP. The aim of our evalu-
ation is to quantify the impact of each algorithmic techniques
from sparse Cholesky on Apsp, though these techniques are
not specific to sharedmemory; Section 6 briefly discusses can-
didate implementations for other programming models and
frameworks, such as distributed memory. We present perfor-
mance of SuperFw for both the sequential andmultithreaded
implementation on different datasets listed in Table 3.

5.1 Experimental Setup

In this section,wepresent the details of theTest Bed, Baselines
and the test graphs that we use for experiments.

5.1.1 Test Bed. We conducted our experiment in a shared
memory system that contains 32 cores as a dual-socket 16-
core Intel E5-2698 v3 “Haswell” processors. Each socket has
40-MB shared L3 cache. It has a total of 128 GB DDR4 2133
MHzmemory arranged in four 16GBDIMMsper socket. Each
core can support two hyperthreads, thus 64 threads in total.

5.1.2 Competing Apsp implementations . We compare the
SuperFw implementation that uses the three optimizations
(a) ND ordering (b) Supernodal structure and (c) elimination
tree parallelism with the following three baselines.
• BlockedFw : this is an efficient multithreaded implemen-
tation of Algorithm 2 using OpenMP. This implementation
does not exploit the sparsity of the graph. This would per-
form n3 operations.
• SuperBfs: This algorithm does not use the optimal ND or-
dering.However, it doesperformsymbolic factorizationand
set-up supernodal data structure.We perform BFS from the
vertex-0anduse theorder inwhichverticeswerediscovered
as the ordering, to ensure that initial ordering of the ma-
trix has some structure, so supernodal approach might still
exploit the sparsity. This would perform O

(
n3
)
operations,

but coefficients might be much smaller than BlockedFw
• Dijkstra: This algorithm performs a single-pair shortest
path from all the vertices. It has the lowest asymptotic com-
plexity of all themethods considered herein, and is the core
of Johnson’s algorithm when there are no negative edge
weights. (That is, Johnson’s algorithm uses Dijkstra as a
subroutine and would be more expensive than Dijkstra for
graphs with only positive edge weights.)
• BoostDijkstra:Apsp implementationusingoff-the-shelf
implementation ofDijkstra’s algorithm frompopular Boost
Graph Library (BGL) [37].2

2BGL also provides an implementation of both Floyd-Warshall and John-
son’s algorithm, but their performance is not competitive to BoostDijkstra,
and thus not considered.
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(a) Small Graphs

(b) Large Graphs

Figure 6: Performance of differentmultithreadedApsp algorithms for small and large graphs. Each bar shows normalized execution time for

a given algorithmandgraph. Time is normalized over the baselineBlockedFwandDijkstra algorithm for small and large graphs respectively.

Each text label over each bar denotes the speed-up over the reference algorithm.

(a) finan512 (b) net4-1

(c) email-Enron (d)wing
Figure 7: Shared-memory scaling of different Apsp implementa-

tions for large graphs on a intel "Haswell" dual-socket system with

32 physical cores.

Figure 8: Impact of etree parallelism (Section 3.5) on the scaling of

SuperFw algorithm on 32 cores (see Section 5.2.3)

• ∆-Step: We use the parallel ∆-stepping variant of Dijk-
stra’salgorithm[30] forcomputing thesingle-source-shortest
path in Johnson’s algorithm. We also use the parallel ∆-
stepping algorithm from the Galois Graph library [32]. The
∆-stepping requires tuning the ∆ parameter for each graph.
Our ∆-Step-based Apsp is autotuned, i.e., it tries different
values of ∆ of first few SSSP calls and picks the best ∆ for
rest of the execution.

Thecoreofall threeFloyd-WarshallalgorithmsBlockedFw,
SuperBfs and SuperFw use the same semiring double preci-
sionmatrix-multiplicationkernel SemiringGemm.TheSemir-
ingGemm kernel achieves 10.2 Gflop/sec per core which is
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28% of the theoretical peak of 36.8 Gflop/sec (18.4 Gflop with-
out FMA instructions) per core. The BlockedFw achieves a
maximum of 244 Gflop/sec on 32 cores. The operand sizes can
vary significantly in SuperFw, thus per core flop rate varies
between graphs and ranges from 7.6-9.4 Gflop/sec.

5.1.3 Test Graphs. We used graphs from three different
categories (a) Real world Graphs (b) Graphs from DIMACS
competition and (c) Random graph generators with different
parameters. The details of the set of matrices such as the size
and density used for experiments are listed in Table 3. The
graph luxembourg_osm has 114k vertices, which requires
105GB of memory to store the distance matrix, is the largest
graph we could successfully try. The Djikstra’s and ∆-Step
algorithmsworks on graphswith positive edgeweights, sowe
modify the adjacency matrices from real world and synthetic
to have only positive entries.

5.1.4 Pre-processingoverhead. Theworst-casepre-processing
cost is 18% of the multithreaded SuperFw execution time,
even though pre-processing (i.e. graph partitioning viaMetis)
is not multithreaded. In sequential or single-node case, the
pre-processing step is not a a bottleneck for even for sparse
Cholesky (which is aO(S3) the operation, whereas SuperFw
performsO(n2S) operations), thus many efforts are towards
improving the performance of the numerical factorization
step. In the subsequent performance and scalability analysis,
the time shown does not include the pre-processing costs.

5.2 Observations

5.2.1 Small Graphs. For small graphs, we compare the
performance of SuperFw against BlockedFw, SuperBfs
and Dijkstra, shown in Fig. 6a. The SuperFw is faster over
BlockedFw by upto 123×, and it represents the impact of
all the optimizations combined. The SuperBfs is faster over
BlockedFw by upto 3.9×. We highlight the following three
key observations.

• Impact ofNDordering: In the case of the testmatrices, de-
launey_n14,OPF_6000, and fe_sphere,NDorderingyielded
significant benefit because of smaller separators. However,
there are many real world cases with smaller separators
that can benefit from SuperFw.
• Impact of Supernodal structure: The asymptotic cost of
SuperBfs is stillO(n3), but it does exploit sparsity to some
extent, unlike blockFW. As in Fig. 6a, this offers an advan-
tage of 1-3.9× onmany real world and synthetic graphs.We
also observe that in the case of hypercube_14with n

logn sep-
arator, reordering cannot reduce the asymptotic cost. Yet,
by using a supernodal data structure, we get a performance
improvement of 4.1x speedup over BlockedFw.

• Adversarial Cases: Finally, there are synthetic graphs like
extended_barbasi, where neither ND ordering nor supern-
odal structureofferany improvement.Moregenerally, there
are graph classes, like expander graphs, that are sparse yet
well connected. Such graphs won’t have good separators
and we would not expect SuperFw to provide any advan-
tage over BlockedFw. There are number of random graph
generators, such as Erdos-Renyi, Watts-Strogatz, that have
similar properties for graphs with large number of vertices.

We expect that the performance gap between BlockedFw
and SuperFwwill increase with increasing in problem size
due to asymptotic difference in the time-complexity, whereas
performance gap between BlockedFw and SuperBfs will
remain similar for larger graphs.

5.2.2 Large Graphs. For large graphs, we compare the
performance of SuperFw with Dijkstra, BoostDijkstra,
and ∆-Step and leave out O

(
n3
)
algorithms shown in Fig. 6b.

The SuperFw is faster by 0.2-52× than the Dijkstra’s. We
expect that for larger graphs Dijkstra will outperform Su-
perFw, nevertheless, SuperFw is competitive to Dijkstra
for planar graphs of sizes on the order of 100k vertices, e.g.,
luxembourg_osm. The BoostDijkstra and Dijkstra are al-
gorithmically very similar, yet BoostDijkstra is often slower
than our implementation of Dijkstra. This differencemainly
stems from BoostDijkstra’s adjacency list data structure
for storing graphs vs compressed-sparse-row storage used
by Dijkstra. The ∆-Step is neither work-optimal and nor
scalable, thus not competitive to either Dijkstra or SuperFw.

5.2.3 Scalability.

• Impact of eTree Parallelism: In Fig. 8, we show the rel-
ative performance of two implementations of SuperFw,
with and without eTree parallelism on cores over sequen-
tial performance. eTree parallelism can improve the scal-
ability of SuperFw by 2×. The impact of eTree parallelism
is more visible for small-graphs, e.g.,USPowerGrid, where
SuperFwperforms very little per-iterationwork. For larger
graphs eTree parallelism has a little impact of performance
as they already enough parallelism in each iteration. Hence
eTree-parallelism is essential for strong scaling.
• Scalability of different Apsp implementations: The
scalability of Dijkstra, BoostDijkstra, ∆-Step, and Su-
perFw are compared in Figs. 7a to 7d. Our SuperFw im-
plementation scales linearly up to 32 threads (= number of
physical cores) achieving a parallel efficiency of 74%. The
Dijkstra and BoostDijkstra can effectively use hyper-
threading to hide the latencies of the priority queue data
structure, thus they can scale to 64 threads. The ∆-Step
method only parallelizes each SSSP call, thus it requires sig-
nificantly more inter-thread synchronizations and scales
poorly compared to the other three implementations.
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6 RELATEDWORK

This work builds upon principles from several different ar-
eas including semiring algebra, graph algorithms and sparse
direct solvers.
A number of other problems are equivalent to Apsp, e.g.

metricity, minimum-weight triangle, second shortest path,
etc. [43, 44]. While Apsp is the semiring equivalent of matrix
inversion, no no truly subcubic algorithm (i.e., equivalent of
Strassen’s algorithm) forApsp is known.The best knowncom-
plexity of Apsp for the dense case isO

(
n3

no1

)
[43], andO

(
mn
logn

)
for sparse graphs [7]; for the parallel case, it is O(logn) [40].
The equivalence between finding the shortest path and

solving a system of linear equations goes back to the work of
Carre [3, 6]. He gavemany interpretation of linear algebra op-
erations, including LU factorization and Sherman-Morrison
Woodbury formula for graph updates. Modern treatments of
this subject can also be found elsewhere [16, 28].
The method of nested dissection (ND) was discovered by

George [13] for solving linear system of equations from finite
elementmeshes. ItsgeneralizationbyLiptonetal. [26], and the
planar separator theorem [27, 39] has had a large impact on a
number of graph and sparse linear algebra algorithms. In par-
ticular, several algorithms for path problems on planar graphs
are based on ND and the planar separator theorem [8, 11, 42].

Lastly, sparsedirect solvershavebeenstudied ingreatdetail
in the context of parallel computing. Depending on sched-
uling, there are other variants namely, left-looking, right-
looking, multifrontal, and Crout’s variant. The effect of dif-
ferent scheduling strategies on performance can be found
at [19, 34]. Theproposed SuperFwclosely resembles the right-
looking variant. Similarly, a number of works have focused
on improving scalability on accelerators such as GPU [15, 23–
25, 29, 36, 41, 46] and distributed memory [2, 18, 35, 45]. Most
distributed algorithms rely on some form eTree parallelism
for reducing communication and data distribution [18, 35].

7 CONCLUSION

This paper is the first practical demonstration of how to ex-
ploit the algebraic structure of the all-pairs shortest paths
problem to create a parallel APSP algorithm for sparse graphs,
applying all of the machinery we know from sparse direct
solvers for linear systems. Although the observation about
the similarity of linear solver and shortest path is known, ours
is the first attempt to create a practical implementation and
conduct an empirical analysis. We believe that the algebraic
interpretation of APSP is important to explore, and our study
is just the first of many that we or others could carry out,
now that we have done this one. In particular, consider linear
systems. In that setting, there is a rich “hierarchy” of methods
that trade-off generality and robustness for speed and asymp-
totic optimality, with “dense LU” at one end and “multigrid”

at the other. Sparse Cholesky/LU is in the middle of that spec-
trum. For APSP, we do not know yet fully understand what
the analogous hierarchy might look like. This study would be
just one a series of future studies that could try to fill in the
other analogous methods.
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