PANDORA: A Parallel Dendrogram Construction Algorithm for
Single Linkage Clustering on GPU

ABSTRACT

This paper presents PANDORA, a novel parallel algorithm for effi-
ciently constructing dendrograms for single-linkage hierarchical
clustering, including HpBscan™. Traditional dendrogram construc-
tion methods from a minimum spanning tree (MST), such as agglom-
erative or divisive techniques, often fail to efficiently parallelize,
especially with skewed dendrograms common in real-world data.

PANDORA addresses these challenges through a unique recur-
sive tree contraction method, which simplifies the tree for initial
dendrogram construction and then progressively reconstructs the
complete dendrogram. This process makes PANDORA asymptotically
work-optimal, independent of dendrogram skewness. All steps in
PANDORA are fully parallel and suitable for massively-threaded
accelerators such as GPUs.

Our implementation is written in Kokkos, providing support
for both CPUs and multi-vendor GPUs (e.g., Nvidia, AMD). The
multithreaded version of PANDORA is 2.2X faster than the current
best-multithreaded implementation, while the GPU PANDORA imple-
mentation achieved 6-20x on AMD MI250X and 10-37x on Nvidia
A100 speed-up over multithreaded PANDORA. These advancements
lead to up to a 6-fold speedup for HpBscan® on GPUs over the
current best, which only offload MST construction to GPUs and
perform multithreaded dendrogram construction.
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1 INTRODUCTION

A dendrogram, a tree-like structure that encapsulates the hierarchi-
cal nature of data, is a critical tool in machine learning. Its ability to
visually represent clusters’ formation, merging, and splitting has ap-
plications in diverse fields, from linguistics [11], astronomy [13] and
psychometry [47] to document classification [29] and spatial-social
network visualization [30]. In the computational and molecular
biology world, dendrograms are used for representing phylogenetic
trees [28], elucidating gene clustering [21] and the evolutionary
relationships among biological taxa [12]. They are instrumental in
decoding gene co-expression [32, 46], protein-protein interaction
networks, speciation rates, and genetic mutations [34, 49].
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Figure 1: Time taken by HpBscAN”™ components construc-
tion (Euclidean minimum spanning tree (MST) and dendro-
gram) on AMD EPYC 7A53 CPU and AMD MI250X GPU for
Hacc37M dataset.

In most hierarchical clustering algorithms, the decision of how to
combine or split clusters is done through a use of a distance metric
(e.g., Euclidean) [14, 24, 44]. Algorithms differ in their definition of
the dissimilarity between two clusters. In this work, we will focus
on the single-linkage clustering, which defines the distance between
two clusters to be the minimum distance among all pairs of points
such that the points in a pair do not belong to the same cluster. Our
choice is motivated by its use in the popular Hierarchical Density-
Based Spatial Clustering of Applications with Noise (HpBSCAN™)
algorithm [9].

In general, dendrogram construction is considered to be an inex-
pensive operation. It is often done as step in a larger procedure. For
example, in HDBscAN™, constructing MST (as part of HpBscan™) for
high-dimensional data relies on high-dimensional nearest neighbor
search, an expensive procedure dwarfing the dendrogram construc-
tion cost. Another reason is that the dendrogram construction is
often done for the datasets of moderate size.

None of these assumptions hold for the problems we explore in
this work. We are focus on the large datasets of the low dimensional
data. In this case, dendrogram construction becomes a dominant
cost. Figure 1 (middle) shows the status quo for an astronomy
dataset Hacc37M, where the MST construction is performed on a
GPU, and the dendrogram construction is done on CPU. We see
that the dendrogram construction takes 86% of the overall time,
hampering the overall performance of the HpBscan™ algorithm.
The goal of this paper is thus to bridge this gap by presenting a
new parallel dendrogram construction algorithm suitable for GPU
architectures.
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Figure 2: A high-level visualization of the PANDORA algo-
rithm. The original MST (top left) is contracted (bottom
left). Using the dendrogram corresponding to the contrac-
tion (bottom right), the original dendrogram is recovered by
edge reinsertion from the same level. The dendrograms are
shown using the edges numbering of the original MST; den-
drogram leaf nodes, corresponding to the data points, are
omitted.

We introduce a novel parallel algorithm for constructing single-
linkage dendrograms. Our approach is very different from the ex-
isting top-down and bottom-up approaches (see Section 2). It effec-
tively handles highly skewed dendrograms such as shown on Fig-
ure 3, which are common as we will demonstrate. The algorithm
contracts a subset of edges in an MST to yield its coarser version.
We efficiently compute the dendrogram for this coarse MST and
reconstruct the dendrogram for the original MST by reintegrat-
ing all the previously contracted edges. The contraction is applied
recursively to ensure the work optimality of our algorithm. This
process is illustrated in Figure 2 using an MST with two levels of
contraction. Figure 1 (right) shows that we are able to achieve our
goal, improving the construction time by 17X, now taking 26% of
the overall time for this dataset.

Our proposed parallel dendrogram construction algorithm is
work-optimal, highly parallel, and efficient, even when dealing with
highly skewed dendrograms. All the steps are highly parallelizable
and can be easily adapted for multicore CPUs and GPU architectures
using parallel constructs such as parallel loops, reductions and
prefix sums. We implemented our algorithm using the performance-
portable Kokkos library [41], which marks the first known GPU
implementation for dendrogram construction.

We evaluate our algorithm on various real-world and artificial
datasets, and compare it to the best-known open-source multi-core
CPU implementation. Our experimental results reveal that our

1.75

1.25

1.00

distance
)
1
Y

0.75

0.50

0.25

0.00

Figure 3: An example of a highly skewed dendrogram con-
structed from a 40 point sample taken from a 3D Gaussian
distribution using HpBscanN”™ mutual reachability distance
with minPts = 2.

multi-core CPU implementation is twice as fast as the state-of-the-
art, while the GPU variant achieves 15-40X speedup compared to
the multi-core CPU performance.

Our work significantly advances the state-of-the-art in paral-
lel HpBscAN™ clustering computation on GPUs for large datasets.
Combined with recent developments in parallel Euclidean MST com-
putation on GPUs [36], our algorithm facilitates rapid HpBscaN™
clustering computation on modern hardware for low dimensional
datasets. For example, a single Nvidia A100 GPU can now compute
HbBscaN™ clustering in under one second for a 37M cosmological
problem, and around six seconds for a 300M uniformly distributed
point cloud.

2 BACKGROUND

2.1 Hierarchical clustering

Hierarchical clustering is a method of clustering data that creates a
hierarchy of clusters, known as a dendrogram. Unlike other meth-
ods, it does not require the number of clusters in advance. THierar-
chical clustering comes in two flavors: agglomerative, which merges
clusters from the bottom up, and divisive, which splits clusters from
the top down.

Distance is key in hierarchical clustering, influencing how data
points are considered similar or dissimilar. This leads to various
hierarchical clustering types, such as single linkage, complete link-
age, and average linkage, each with a different distance calculation
method.

2.2 Single linkage clustering

Single linkage clustering [16], or nearest neighbor clustering, mea-
sures the distance between clusters by the shortest distance between
any two points in the clusters. This method excels at finding clusters
with irregular shapes, unlike complete linkage and average linkage,
which use the longest and average pairwise distances, respectively.
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Figure 4: Steps in top-down dendrogram construction(Section 2.5.1). The dendrogram starts with the heaviest edge in MST as the root, which
is removed to divide the tree into two connected components. In subsequent steps, the heaviest edge among all components is identified, and

their parent is the heaviest edge from the previous step. This process is repeated recursively for each component of the tree.

Table 1: Available open-source dendrogram construction im-
plementations

Implementation Description

scikit-learn (Python) [33]  Sequential implementation

hdbscan (Python) [31] Sequential implementation

hdbscan (R) [18] Sequential implementation

Wang et al. [43] Multi-threaded implementation in shared memory

rapidsai [22] Parallel MST implementation using GPUs, sequen-
tial dendrogram construction

Single linkage clustering (SLC) is a versatile technique with ap-
plications in bioinformatics, astronomy, and image processing. In
bioinformatics, SLC is used to analyze gene expression data [38].
Astronomers apply a similar approach, the Friends-of-friends al-
gorithm, to identify galaxy clusters [13]. In image processing, SLC
aids in grouping similar pixels for image segmentation [45] and
examines image morphology using tree structures [8, 19, 39]. Ad-
ditionally, clustering methods based on the Minimum Spanning
Tree (MST), which are related to SLC, are used in various stud-
ies [23, 27, 46, 48].

Single linkage clustering methods, such as HpBscaN®, begin by
creating a minimum spanning tree (MST). This requires a distance
matrix that holds the pairwise distances between data points. How-
ever, in spatial point clustering, the matrix isn’t explicitly formed.
Instead, spatial search trees like kd-trees are used [4, 36, 43]. To
compute the MST, algorithms like Prim’s, Kruskal’s, or Boruvka’s
can be employed [7, 26, 35].

The second step in single linkage clustering is to construct a
dendrogram that reveals a hierarchical cluster structure. The den-
drogram is produced using the MST, which is explained in greater
detail.

2.3 HDBSCAN*

HpsscaN™ (or hierarchical DBSCAN) [9], a variant of single-linkage
clustering, is a hierarchical, density-based algorithm that groups
points into clusters based on local density compared to their larger
neighborhood. It is adept at finding clusters of various shapes
and densities, with the primary parameter being minPts, which
estimates local density. HDBscaN™ employs the so called mutual

reachability distance, an adaptation of the Euclidean distance that
incorporates local density.

Traditional DBSCAN requires a user-defined epsilon (€) parame-
ter to determine the maximum distance between points in a neigh-
borhood or cluster. HDBSCAN*, on the other hand, eliminates the
need for a manually set € value by using a dendrogram that contains
clustering information for a range of epsilon values.

Table 1 presents a list of existing HDBSCAN™ implementations.
Previous research on HpBscaN™ parallelization mainly concentrated
on optimizing distance calculations and MST computations. This
includes the single-linkage clustering in the cuML library, which
employs RAPIDS .ai/Raft [22]. Only one study [43], to our knowl-
edge, explores the parallelization of dendrogram construction for
HpBscaN™ on multithreaded platforms, which we will discuss in
greater detail.

2.4 Dendrogram

Dendrogram: A dendrogram is a directed tree structure used to
represent hierarchical clustering. The tree consists of leaf nodes
that represent data points and internal nodes that represent clusters
of data points. The relationships between clusters are conveyed
through directed edges, indicating whether a cluster contains or is
contained in another cluster.

Dendrogram in Single-Linkage Clustering: Single-linkage
clustering methods use the edges of the MST to represent the in-
ternal nodes of the dendrogram. If an edge is removed from the
MST, it indicates splitting a cluster into two smaller clusters. As a
result, clusters correspond to MST edges, and removing them leads
to cluster separation. Removing an edge can only divide a cluster
into two, hence the dendrogram is typically a binary tree.

2.5 Dendrogram construction algorithms

25.1 Top-down dendrogram construction. The top-down ap-
proach for constructing a dendrogram from a given Minimum
Spanning Tree (MST) employs a divide-and-conquer strategy. This
method hinges on the principle that the dendrogram’s root corre-
sponds to the largest edge in the MST. Removing this edge divides
the tree into two subtrees, which may be as small as a single vertex.
These subtrees form the child nodes of the removed edge in the
complete dendrogram. The process is then recursively applied to
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Algorithm 1 Top-down dendrogram construction for a given MST
T =(V,E).

1: function DENDROGRAMTOPDOWN(T)

2. if |[V| = 1 then

3 D« {V}

4 else

5: D=0

6 e « the largest edge in E

7 Remove e from E, splitting T into T; and T
8 forall T; € {T}, T>} do

9 D; < DENDROGRAMTOPDOWN(T;)

10: Set root note of D; as a child of e in D
11:  return D

each subtree, removing the largest edge until all edges are elimi-
nated. First three steps for an example MST is shown in Figure 4.
Pseudo-code for this method is presented in Algorithm 1.

In some specific cases, such as in image morphological studie [6,
20], a variant of this approach has shown good parallel performance.
However, for general dendrogram construction, this approach has
several drawbacks.

The top-down approach is particularly prone to underperform-
ing with skewed dendrograms, which are common in real-world
data. For optimal performance, the algorithm must split the tree by
removing the largest edge, aiming for two subtrees of equal size.
However, in skewed scenarios, this can result in highly dispropor-
tionate subtree sizes, occasionally reducing one subtree to a single
vertex. This results in:

o Increased asymptotic cost: The cost of the algorithm is O(nh),
with h representing the dendrogram’s height. In the case of
skewed dendrograms, this cost surpasses the O(nlogn) cost
associated with well-balanced dendrograms. Therefore, the
top-down algorithm is not work-optimal for highly skewed
dendrograms.

o Limited parallelism: The imbalance of two subtrees after an
edge removal limits the available parallelism. Moreover, the
computational depth (the number of required parallel steps)
is O(h), much higher than the ideal O(log n).

2.5.2 Bottom-up dendrogram construction. The bottom-up pro-
cesses the edges in order from the smallest to the largest. For each
edge, it identifies the clusters containing its vertices, and creates a
new parent cluster by merging the vertices’ clusters. To keep track
of the cluster membership, it utilizes the union-find structure [40].
Algorithm 2 shows pseudo-code for this approach.

In contrast to the top-down algorithm, the bottom-up approach
is work-optimal for any dataset. The most demanding operation,
sorting, has O(nlogn) complexity. Processing edges has an asymp-
totic cost O(nA(n)), where A(n) represents the inverse Ackerman
function [40]. This gives the overall worst-case time complexity of
O(nlogn).

The main drawback of the algorithm is that the edges can only
be processed sequentially. For a given edge, it is impossible to say
when it should be processed given the information only about its

Algorithm 2 Bottom-up dendrogram construction using union-
find for a given an MST T = (V,E). E is assumed to be sorted,
E={e}.

1: function DENDROGRAMBOTTOMUP(T)
2. Initialize an empty union-find structure UF
3. Initialize set R with invalid entries ¢
4 fori=1to |E| do

5: Let v1, 03 be the vertices of e;

6 fork=1,2do

7 0 < UF.find(ovg)

8 if g # ¢ then

9 Set e; to be the parent for rg,
10: else

11 Set e; to be the parent for v
12: UF.union(v1,v2)

13: TUFfind(o;) < &

vertices or adjacent edges. This is due to the non-local nature of
the dendrogram, where the parents of an edge may come from a
completely different part of the graph. Thus, standard methods to
parallelize sequential algorithms, such as [5], cannot be used here.

2.5.3 Mixed dendrogram construction. Wang et al. [43] combined
top-down and bottom-up approaches to create a parallel algorithm
for the shared memory architecture. The algorithm avoids the lim-
itations of the sequential bottom-up approach by first removing
a set of the largest edges (a tenth or a half) in a top-down fash-
ion, splitting the tree into several subtrees. The dendrograms for
the subtrees and the top tree are constructed using the bottom-up
approach, then stitched together.

The algorithm exhibits higher degree of parallelism compared to
the sequential counterpart. However, it is still subject to the same
limitations for constructing highly skewed dendrograms, leading
to work inefficiency and imbalance, particularly problematic on
GPUs. Moreover, it relies on the Euler tour implementation for
partitioning. Euler tour construction heavily depends on parallel
list-ranking, which significantly underperforms on GPUs compared
to prefix-sum or sort algorithms.

3 PANDORA: PARALLEL DENDROGRAM
COMPUTATION USING TREE
CONTRACTION

PANDORA leverages dendrogram chains—continuous segments with-
out branching, present in highly skewed dendrograms. Notably,
within a chain, the edges are organized by their index. Consider an
inverted Y-shaped dendrogram (Fig. 5): it consists of three chains—top,
bottom-left, and bottom-right. By assigning each edge to its respec-
tive chain, we can efficiently sort and link the chains to reconstruct
the full dendrogram.

To identify these chains, we employ a tree contraction method,
which generates a condensed version of the original dendrogram.
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Algorithm 3 Dendrogram Computation using Tree Contraction

Require: T = (V, E): minimum spanning tree
1: E, < Find edges of contracted tree
2: Ty < Construct contracted tree by contracting edges in E — E,
inT
: Py < Compute dendrogram of contracted tree Ty
: > Construct complete dendrogram P from P,
: for each edge e in E — E, in parallel do
> Find the chain of e using contracted dendrogram P,
P,(e) < Find parent of e in P,
> Map e to its corresponding chains in P
C < Determine of chain containing e
10:  Add e to set of edges in the chain C

R A

11: > Order and connect chains to form P

12: for each chain C do

13:  Sort edges in C by their index in E

14:  for each edge e in C, excluding the first do
15: P(e) « Find predecessor of e in C

16:  if e is first edge in sorted chain then

17: P(es) < a-edge for chain C

18: Connect chains to form the complete dendrogram P

19: return P
OO e e
>0, @@@
006960
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s e e A

Figure 5: The PanDora leverages dendrogram chains to construct them
efficiently. This dendrogram can be divided into three chains: top, bottom-
left, and bottom-right.

It condenses each dendrogram chain into a single edge in the con-
tracted dendrogram, allowing us to map all edges to a dendrogram
chain and construct the complete dendrogram.

PANDORA operates in two main stages. The first is the recursive
tree contraction (Section 3.2), where we strategically reduce the
tree’s size by contracting specific edges. We apply this contraction
recursively to determine the dendrogram of the reduced tree. The
second stage is the dendrogram expansion (Section 3.3), which
involves piecing together the full dendrogram, starting from the
most contracted state and incrementally expanding it.

We begin by defining essential terms and notations for our algo-
rithm’s description.

3.1 Terminology and notation

3.1.1  Minimum spanning tree structure. Consider a Minimum Span-
ning Tree (MST) T = {V, E, W}, where we aim to calculate its den-
drogram. Let n, denote the number of vertices, and n = ny, — 1
represent the number of edges in the MST. The dendrogram compu-
tation begins with sorting the edges in T by weight in descending
order, which requires O(nlog n) time. This sorting step is crucial
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for the dendrogram’s computation, ensuring that edges with equal
weights are ordered consistently to preserve the dendrogram’s
uniqueness and facilitate the validation of our method. For sub-
sequent discussions, we will assume that the edges are already
sorted in this manner. We use the following notation to describe
the incidence structure of the tree.

Incident edges: For a vertex v € V, the set Incident(v) in-
cludes all edges incident to v. For example, as shown in Figure 7a,
Incident(a) comprises the edges {eo, ez, €3, €5 }.

Maximum incident edge: maxincident(v) denotes the edge
with the highest index in Incident(v). From the previous example,
maxIncident(a) = es.

Neighboring edges N (e): For any edge e, the set N/ (e) consists
of edges that share a vertex with e. Specifically, if e connects vertices
v and u, then N (e) = Incident(v) U Incident(u).

Edge contraction of a tree We can create a contracted tree
Tc = (Vg, Ec) from a tree T and a subset of edges E. To do this, we
contract the edges in the set E — E,. Initially, V. is identical to V.
For each edge e = (u,v) € E — E., we merge u and v into a single
supervertex vu, removing u and v from and adding supervertex vu
to V.. The supervertex vu inherits the neighbors of u and v, except
for u and v themselves. This contraction is repeated for all edges
in E — E;. The resulting contracted tree T, comprises the modified
vertex set V. and the edge subset E,.

3.1.2  Dendrogram structure. A dendrogram is a directed rooted
binary tree, denoted as D = {Vy, E4}. Its vertex set V; comprises
two types of nodes: vertex nodes, representing the vertices of the
Minimum Spanning Tree (MST), and edge nodes, representing the
MST’s edges. Thus, we have V; = V' U E, with vertex nodes located
at the leaves corresponding to individual data points, and edge
nodes as internal nodes signifying clusters.

The dendrogram’s structure is established through directed links
that outline parent-child relationships between nodes. These re-
lationships determine the edge set Ey, as defined by the parent
function P. Specifically, E; is composed of directed edges (v — u)
where P(v) = u, with v being a member of V;—either a vertex or
an edge of the MST—and u representing an edge in the MST. Thus,
dendrogram computation is equivalent to determining the parent
P for all nodes in V.

Parent of a vertex-node: In a dendrogram, the parent of a vertex-
node v € V is the edge that disconnects v from the tree when
removed during the top-down process. This process entails sequen-
tially eliminating edges in Incident(v), beginning with the heaviest
(the smallest index) and concluding with the lightest (the largest
index). Thus, the dendrogram parent of vertex v is the edge in
Incident(v) with the largest index.

P(v) = maxIncident(v) Yo e V; (1)

For example, in Figure 7a, P(a) = es. The incidence structure of the
tree allows us to determine the parents of all vertex nodesv € V.
However, identifying the parents of the edge nodes presents the main
challenge.

Types of edge nodes: We can classify edge nodes in a dendrogram
based on the number of vertex nodes they have as their children.
In a binary dendrogram, each edge node has exactly two children,
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Figure 6: Dendrogram corresponding to the MST in Figure 7a. We mark the
vertex nodes as triangles and edge nodes as circles. The edge nodes are further
classified into leaf, chain, and a-edges.

which can be either an edge or a vertex node. This leads to three
types of edge nodes (shown in Figure 6):

o Leaf edges: have two vertex nodes as children.

e Chain edges: have one vertex node and one edge node as
children.

e a-Edges: do not have any vertex node as a child; both of
their children are edge nodes as well.

Using the MST’s local incidence structure and Equation (1), we
can identify the parent of a vertex node. This information allows us
to calculate the number of children for any edge node. Consequently,
we can classify the edge node as a leaf, chain, or a-edge based on
its local incidence structure alone.

However, discerning the parent of an edge node through this
local structure alone is challenging due to the more complex parent-
child relationships between edge nodes, which often extend beyond
immediate neighbors in the MST. For example, in Figure 7b, edge
node ey has e as its parent, yet e; and ey are situated in completely
separate sections of the tree.

3.1.3 Dendrogram chains and skewness. Dendrogram chains:A
dendrogram ’chain’ is a lineage in a dendrogram that extends with-
out branching. It comprises a series of chain edges followed by a
final non-chain edge, which can be either a leaf or an a edge. Each
edge node in the chain, except for the last one, has a single child
that is the subsequent edge in the chain. The chain’s end is marked
by a leaf or an a edge. Chains ending in a leaf edge are referred to
as leaf chains.

Skewness of the Dendrogram: We define a dendrogram’s
skewness as the ratio of the height of the dendrogram to its ideal
height = log, n. A large number of chains in the dendrogram can
lead to an increase in its height and consequently, its skewness.

Developing a parallel dendrogram algorithm is difficult because
real-world dendrograms are often highly-skewed. Even dendro-
grams constructed from low dimensional Gaussian distributions
have heights far from a balanced tree height. This is a common
occurrence, as we demonstrate in our results section for various
datasets, from GPS location data to cosmology and power usage
(see Table 2.)

3.2 Recursive tree contraction

Pandora constructs a condensed version of MST by contracting all
edges except the o edges. The dendrogram of this condensed MST is
identical to the one obtained by merging chain and leaf nodes in the
full dendrogram. This simplified dendrogram effectively captures
the full dendrogram’s structure.

Computing a-Edges: An a-edge is a type of edge-node that has
two children that are also edge-nodes. If an edge-node e, = {v,u}
has a vertex node as a child, it will be either v or u. The parent
of v is given by P(v) = maxIncident(v). In case k is not equal
to maxIncident(v) and maxIncident(u), then ey is not a parent of
either vertex node incident on it. This means that both its children
are edge-nodes. Therefore, an edge-node e, = {v,u} is an a-edge
if:

k # maxincident(v) and k # maxIncident(u). (2)

Equation (2) allows for the identification of all a-edges using a
constant-time operation for each edge.

In Figure 7, we demonstrate the process. Let’s look at the Mini-
mum Spanning Tree (MST) example in Figure 7a. In Figure 7b, we
highlight the a-edges of the MST. For example, e;¢ = {i,d} is an
a-edge because maxIncident(i) = 20 and maxIncident(d) = 18,
which are both different from 16. None of the terminal edges
are a-edges. For instance, e; = {m, k} is not an a-edge because
maxIncident(m) = 1. Additionally, several internal edges like ez
and ej7 are also non-a edges.

Computing a-MST: We first identify the « edges in the orig-
inal tree. Then, we contract the remaining non-« edges to create
a new tree called a-MST (T). In Ty, each vertex is an a-vertex,
representing multiple vertices from the original tree that have been
contracted. We also keep track of the mapping between the original
vertices and their counterparts in T, which is important for tracing
back to the original structure.

For example, in Figure 7b, we show an MST with highlighted o
edges. We contract the non-a edges to obtain the contracted tree
shown in Figure 7c. The vertices in Figure 7b that are merged to form
a supervertex are colored with the same color. In Figure 7c, vertices
a, n, o, and p are merged together to form a single supervertex, all
colored cyan.

Multilevel tree contraction: The dendrogram of T, can be
computed by recursively applying the same edge contraction strat-
egy. This leads to a multilevel tree contraction scenario. In each
iteration, we find a-edges present at that level of the contracted
tree, and contract the remaining edges to get the tree for the next
iteration. The recursion stops when there are no more a-edges left.
At this point, we get a single chain dendrogram, obtained by sorting
the edges according to their indices.

Figure 7d illustrates the f-MST, which emerges from the second
contraction level applied to the a-MST depicted in Figure 7c. The
B-MST can no longer be contracted, hence the recursion concludes.
The final contraction stage is represented by the f-dendrogram,
displayed in Figure 8b.

To summarize, we begin with a complete Minimum Spanning
Tree (MST). We create a series of smaller trees by performing mul-
tilevel tree-contractions on this tree. We continue this process until
we have a tree without any a edges. The dendrogram of this tree
forms a single chain, which we can obtain by sorting. This results
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Figure 7: Recursive Tree Contraction (Section 3.2). The original MST is shown in Fig. 7a. Fig. 7b highlights the a-edges of the same MST. Removing these
edges results in a division of the tree into components, each marked with a different color in Fig. 7b. These components are then contracted into a-vertices. The
a-vertices and a-edges form the a-MST, the first level of contraction, depicted in Fig. 7c. This contraction process continues to a second level to form the -MST,
as shown in Fig. 7d. Both « and 8 MST encapsulate their respective edges within supervertices.
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Figure 8: The a-dendrogram and -dendrogram for the a-MST (Figure 7c)
and f-MST (Figure 7d) respectively.

in a highly compact dendrogram. In the next section, we explain
how to expand this condensed dendrogram into a comprehensive
one.

3.3 Efficient dendrogram expansion

In this section, we will explain how to construct a complete dendro-
gram from a condensed dendrogram, which we call expansion. Then,
we explain the expansion process for a single-level contraction in
Section 3.3.1. However, single-level contraction is not optimal for
reconstructing a dendrogram. Therefore, we have developed an
expansion algorithm that utilizes all contraction levels, described
in Section 3.3.2.

3.3.1 Dendrogram expansion from single-level tree contraction. Given
an input Minimum Spanning Tree (MST) called T, a contracted tree
containing all the @ edges called T, and the dendrogram of T, spec-
ified with the parent-child relation P, our objective is to assign
each non-a edge to a specific dendrogram chain. To accomplish
this, we follow these steps:

(1) Find the a-vertex Vy(e) containing e.

Finding P, (e(,) Requires Two Steps (not optimal):

1. Finding a descendant of es 2. Traversing the contracted dendrogram

P,(es) = max{k € Ancestor(e;;) and k < 6} = ¢,
k
o ) §
) ©
>—@
C Supernode containing ¢

! Descendent(e;) = max Incident(C) = e

Adjacency structure of T,u e, Dendrogram of T, U eg

Pg("ls)

PXeys)

Pe3)

Figure 9: Inserting a non-« edge es into the a-dendrogram. In this process,
a single level contraction is done within the supervertex to find the parent of
the edge. For example, in the case of edge es, we identify its parent by finding
the maximum incident edge of the supervertex C, which is e;3. We consider
e13 as a descendant of eg. To locate the parent of e;, we go through the den-
drogram upwards and select the ancestor with the highest index among all
ancestors of Py (e13). This way, we determine that the parent of e is e, rep-
resented in the dendrogram of T, U es. However, this accurate method can be
inefficient because it may require traversing the entire dendrogram.

(2) Determine the dendrogram parent of V, (e) in a-dendrogram:
P (Va(e)).

(3) Traverse the a-dendrogram to find the P, (e): Starting from
Py (Vg (e)). and traverse the dendrogram upwards until an
a edge with a smaller index than e is encountered.

Let’s consider how to map the edge es into the dendrogram for
the minimum spanning tree (MST) shown in Figure 7. The a-vertex
that contains eg is denoted as Vy (eg) = C in Figure 7c. The parent of
Vi (€6) in the a-dendrogram is Py (Vi (eg)) = e13 shown in Figure 8a.
To find the parent of e, we traverse the alpha dendrogram from
bottom to top, starting at e;3. We look for an a edge with a lower
index than eg(see Figure 9). In this case, the lower-indexed edge is
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Figure 10: The process of expanding the complete dendrogram from the contracted dendrogram. 1. In Figure 10a, the o dendrogram is shown, with triangles
representing « edges and circles representing « vertices. All non-a edges are displayed within their corresponding « vertices. 2. First, we identify non-a edges
that belong to an « leaf chain by comparing it to the parent of the o vertex containing the edge (Figure 10a). Any edge with a higher index than the o parent is
considered part of the « leaf chain. 3. We then check the non-o edges that are not part of any leaf chains to see if they belong to a f leaf chain. To do this, we
compare each non-o edge to the f edge. The f§ edge is the parent of the « parent we identified in the previous step. Any edge with a higher index than the f§ parent
is marked as part of its §§ leaf chain(Figure 10c). This process continues until all edges are assigned to a leaf chain of some level, or there are no more contraction
levels remaining. 4. Any unassigned edges are allocated to the root chain if further contraction is not possible, as depicted in Figure 10d. 5. Finally, each chain is
sorted to form partial dendrograms. These partial dendrograms are then merged to produce the final dendrogram, as shown in Figure 10e.

ez, which becomes the a-parent of es. Since ey is placed on the left
side of ez, we assign eg to the chain 2L.

However, this method is not optimal as it requires traversing the
alpha dendrogram in a bottom-up order for all non-a edges. In the
worst case, the height of the alpha dendrogram tree can be O(n).
Consequently, finding chains for all non-a edges would require
0(n?) work.

3.3.2 Efficient dendrogram expansion from multilevel tree contrac-
tion. We can optimize the dendrogram expansion process by mak-
ing two key observations.

First, we can quickly identify edges that are part of a leaf chain
without traversing the entire o dendrogram. Second, for edges that
are not in a leaf chain of the a dendrogram, we can efficiently check
if they are in a leaf chain of the  dendrogram.

By recursively applying this process, we can associate all edges
with a leaf chain at some level. Instead of traversing the a den-
drogram from the bottom up, which can be inefficient due to its
height, we start checking for leaf chain membership at level of
dendrograms. This approach is more efficient since the number of
contraction levels log, n.

Leaf Chains: Leaf chains are linked to their respective dendro-
grams. An « leaf chain refers to a sequence that concludes with
a leaf edge in the dendrogram. For example, in Figure 10e, the
sequence denoted by 16L qualifies as an « leaf chain. Upon remov-
ing all « leaf chains from a dendrogram, new leaf chains emerge
with an a edge as terminal, termed S leaf chains. A f leaf chain
may encompass multiple « chains that are not leaves, and the «
edges linked to these chains become part of the § chain. These a
and non-a edges together create an unbroken lineage within the
full dendrogram. This concept of leaf chains can be extended to
higher-level contractions as well.

Mapping edges to a leaf chain: To construct the dendrogram
efficiently, we utilize a constant-time method to determine if an
edge is part of a leaf chain at any level. We aim to identify the

earliest contraction level at which each edge becomes part of a leaf
chain.

For each non-a edge e, we first check if it belongs to an « leaf
chain by comparing the index of the & parent of V, (e) to the index
of e. If the  parent’s index is lower, e is part of an « leaf chain. If not,
we check for inclusion in a f8 leaf chain by examining the f parent
of Vg (e) in the § dendrogram and comparing it to e. Determining
an edge’s leaf chain membership at any level takes constant time
(0(1)).

To map non-a edges to their respective chains, we check if they
are part of an « leaf chain. If not, we then check if they belong to a
leaf chain, and so on, until the edge is placed in a chain. Any edges
not assigned to a chain at the final level are grouped together in the
root chain. The maximum number of contraction levels determines
the cost of associating an edge with a leaf chain.

Example: To map a non-« edge, such as e;s, to a chain, we first
identify its a-vertex, C, as shown in Figure 7c. The a-parent of C,
Py (C), is 13 (Figure 8a). Since 15 is greater than 13, ejs is part of
the leaf chain associated with e;3, specifically the 13R chain.

Next, consider edge e11, with a-vertex E and a-parent Py (E) =
16. As 16 is greater than 11, eq is not in the leaf chain. We then
determine if it’s part of a -leaf chain. The f-vertex containing e11
is X (Figure 7d), with f-parent Pg(X) = 7 (Figure 8b). Since 11 is
greater than 7, eq; is indeed in a f-leaf chain.

The mapping process is illustrated in Figure 10. We start with the
a-dendrogram (Figure 8a), determine the V,, for all edges (Figure
10a), and identify those in an « leaf chain (Figure 10b). Edges not in
an « leaf chain are then checked against f§ leaf chains (Figure 10c).
Finally, edges not in a f§ leaf chain are assigned to the root chain

(Figure 10d).

3.3.3  Final dendrogram construction. In the previous step, we as-
signed all the edges to a leaf chain or root chain. Now, we will
use this information to build the entire dendrogram. This process
involves two main steps:
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Sorting the Chains: Sorting each chain forms partial dendro-
grams. In the sorted chain, we assign the parent of each edge to
its predecessor in the sorted chain, except for the first edge in the
chain, which is handled in the next step.

Stitching the Chains: Each chain is a leaf chain of a contracted
edge from a certain level of contraction. The parent of the first edge
in the chain is marked as the corresponding edge for that chain.
For instance, the a-leaf chain (17, 20) corresponds to the a-edge
e16 (Figure 10b), while the f-leaf chain (16, 11, 14) corresponds to
the f-edge e7 (Figure 10c). Therefore, the parent of e;7 in the a-
leaf chain (17, 20) is the a-edge e, and the parent of eq; is the
p-edge e7, shown in Figure 10e. By connecting chains in this way,
the complete dendrogram is formed shown in Figure 10e.

3.4 Prooof of correctness

This section provides an outline of our algorithm’s correctness
proof. We will introduce the concept of the Lowest Common Den-
drogram Ancestor (LCDA), which helps identify the earliest shared
ancestor in the dendrogram for any two edges. We will demonstrate
that the LCDA of two edges is the edge with the smallest index on
their connecting path in the tree. We define a contraction called
cluster hierarchy preserving edge contraction, which retains the
dendrogram ancestry properties of the original tree. We will outline
the conditions under which this contraction preserves the cluster
hierarchy, which is related to the presence of LCDAs. Additionally,
we will show that contracting a-edges satisfies the necessary con-
ditions for generating accurate dendrograms. The complete proof
will be presented elsewhere.

3.5 Asymptotic analysis

We can show that PANDORA algorithm can construct the dendro-
gram of a minimum spanning tree (MST) with n edges in O(n log n)
operations. Again, the full proof appears elsewhere, but here’s an
outline. This process involves establishing bounds on the number
of edges at each level of the contracted MST, including leaf edges
(n), chain edges (n¢), and « edges (ny). We demonstrate that the
number of a-edges, ny, is at most (n — 1)/2 and that the maximum
number of contraction levels is [log, (n + 1)]. By using these rela-
tionships, we show that the edge contraction cost is O(n) and the
dendrogram expansion cost is O(nlogn). The algorithm requires
two sorting operations, each costing O(n log n), before and after the
tree contraction. Thus, the overall cost of PANDORA is O(nlogn),
making it work-optimal.

4 PERFORMANCE PORTABLE
IMPLEMENTATION

4.1 Kokkos

In our work, we utilized Kokkos [41], a performance-portable pro-
gramming model. This model enables code to run across a range of
CPU and GPU platforms without additional modifications. Kokkos
provides C++ abstractions and supports various hardware through
backends, including CPUs and Nvidia, AMD, and Intel GPUs. The li-
brary introduces abstractions for execution and memory resources,
referred to as “execution space” and “memory space”. However, it
is important to note that Kokkos does not perform hidden data
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Table 2: Datasets used in experiments

Name Dim  nps Imb"  Ref! Desc.’
Ngsimlocation3 2 6M 1e3 [1] GPSloc
RoadNetwork3 2 400K 150 [25]  Road network
Pamap2 4 338M 6e3 [37]  Activity monitoring
Farm 5 3.6M 5e4 [2] VZ-features[42]
Household 7 2.0M 1e3 [3] Household power
Hacc37M 3 37M  1le5 [17]  Cosmology
Hacc497M 3 497TM  6e5 [17]  Cosmology
VisualVar10M2D 2 10M 3e3 [15] GAN
VisualVar10M3D 3 10M led [15] GAN
VisualSim10M5D 5 10M 43 [15] GAN
Normal100M2D 2 100M 1e5 - Random (normal)
Normal300M2D 2 300M 4e5 - Random (normal)
Normal100M3D 3 100M 4e5 - Random (normal)
Uniform100M2D 2 100M 1e5 - Random (uniform)
Uniform100M3D 3 100M 4e5 - Random (uniform)

Imb. = Dendrogram imbalance, Ref. = Reference, Desc. = Description

copies, so users must ensure data accessibility between memory
and execution spaces.

Kokkos offers parallel execution patterns, such as parallel for
loops, reductions, and scans, effectively abstracting hardware com-
plexities. Unlike CUDA, Kokkos does not require explicit mapping
of computation to threads or thread blocks. Instead, it employs
internal heuristics to map a kernel to the underlying hardware
architecture.

4.2 PANDORA implementation

In the context of the PANDORA algorithm, the two main computa-
tional tasks are tree contraction and dendrogram expansion. Each
tree contraction corresponds to a prefix sum operation. During
dendrogram expansion, we map all the contracted edges to their
respective chains in parallel. The cost of mapping a contracted edge
to a chain is O(log n), thus mapping all edges in parallel does not
result in noticeable load imbalance in any architecture. Lastly, PAN-
DORA performs two parallel sort operations: one before contraction
and another after mapping all edges to a chain.

The algorithms described in the text use kernels composed of par-
allel loops, reductions, prefix sums, and sorting operations. Outside
of Kokkos, these operations are widely available in many parallel
libraries, such as Thrust[10].

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup

5.1.1 Competing Implementation. We evaluate PANDORA’s per-
formance on multithreaded AMD EPYC 7A53, Nvidia A100 and
AMD MI250X (single GCD). Our baseline is UNIONFIND-MT from
https://github.com/wangyiqgiu/hdbscan [43]. Note that UN1ONFIND-
MT involves a parallel multithreaded sort and a sequential Union-
find step phase. We used this implementation for verification of
our results. To our knowledge, this is the fastest implementation of
dendrogram computation available, and we use it as a baseline for
comparison. In our implementation, we used Kokkos [41] (version
3.7) for implementing our parallel dendrogram algorithm.


https://github.com/wangyiqiu/hdbscan
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5.1.2  Testing environment. The numerical studies presented in the
paper were performed using AMD EPYC 7A53 (64 cores), Nvidia
A100 and a single GCD (Graphics Compute Die) of AMD MI250X".
The chips are based on TSMC’s N7+, N7 and N6 technology, respec-
tively, and can be considered to belong to the same generation. We
used Clang 14.0.0 compiler for AMD EPYC 7A53, NVCC 11.5 for
Nvidia A100, and ROCm 5.4 for AMD MI250X.

Performance Metrics: We measure our performance in MPoints/sec,
which represents the number of points (in millions) processed per
second. This metric is computed as le-6 * #points in dataset/ Time
to compute dendrogram.

5.1.3 Datasets. For our experiments, we used a combination of
artificial and real-world datasets listed in Table 2 to comprehen-
sively evaluate our algorithm and meet our study goals. The GPS
locations and HACC datasets replicate real-world conditions, the
datasets generated with [15] allow for better comparison with other
works, and synthetic datasets help us understand our algorithm’s
behaviour in different scenarios. We focused on 2D and 3D datasets,
where dendrogram construction was the bottleneck; on higher di-
mensions, MST construction was the primary issue.

Table 2 also includes the information about the height of the
constructed dendrograms. Specifically, we show the ratio of a den-
drogram height for each dataset to that of a perfectly balanced
binary tree. As we can see, it clearly indicates the skewedness of

!Currently, HIP (Heterogeneous-computing Interface for Portability) — the program-
ming interface provided by AMD - only allows the use of each GCD as an independent
GPU.

the dendrograms, highlighting the challenge of finding enough
parallelization for an efficient algorithm.

5.2 Performance evaluation of dendrogram
construction

We evaluate the performance of the for the baseline UN1oNFIND-MT
and PANDORA on various architecture across different datasets. The
results are shown in Figure 11.

5.2.1 Multithreaded performance. We found that PANDORA outper-
forms UN1ONFIND-MT in multithreaded scenarios, with speed-ups
ranging from 0.66 to 2.2 times. The RoadNetwork3D dataset is an ex-
ception, showing slower performance and having the smallest size
with a lower dendrogram imbalance. Smaller 2D datasets exhibit
limited multi-threading capabilities, with PANDORA having a slight
advantage. However, 3D and 4D datasets show more significant
speed-ups, reaching up to 2.2 times faster. In higher-dimensional
data sets, both algorithms have higher overall throughput, but PAN-
DORA still has a slight edge. Thus, even with twice the sequential
work, PANDORA remains faster than UNIONFIND-MT in a multi-
threaded setting.

5.2.2  GPU performance. Our study in Figure 11 showcases PAN-
DORA’s performance on both Nvidia A100 and AMD MI250X. Our
findings indicate that PANDORA operates 6-20% faster on AMD
MI250X (single GCD) than on AMD EPYC 7A53, whereas Nvidia
A100 outperforms the fastest multithreaded variant by 10-37x. The
RoadNetwork3D exhibits the lowest performance, caused by the
small dataset size, not allowing to reach GPU saturation. We gener-
ally observe higher speed-ups for lower-dimensional datasets. This
may only sometimes be the case as higher-dimensional datasets
often have lower-dimensional substructures, resulting in similar
behavior to lower-dimensional data. We also observe that the GPU
variant performs well for all ranges of dendrogram skewness. For
example, despite an imbalance of 43 in VisualSim10M5D, we still
achieve a considerable speed-up over multithreaded PANDORA. We
conclude that PANDORA has sufficient parallelism to utilize modern
GPUs. , and it works well with highly skewed and not-so-skewed
dendrograms alike.

Our implementation’s performance is portable across multicore
and GPU architectures, with a single source compiled for various
backends. We did not optimize our algorithm specifically for any
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Figure 13: Comparison of the time to compute first two steps of the HpBscaN™ algorithm using MEMOGFK on AMD EPYC 7A53
(blue) and ArborX+our dendrogram algorithm using AMD MI250X (single GCD) (orange).

device architecture, nor did we investigate the impact of archi-
tectural differences between AMD MI250X and Nvidia A100 on
performance. However, we should note that we primarily utilized
Nvidia A100 in our software development, which may have led to
a performance bias towards that architecture.

5.3 Scaling problem sizes

One way to determine the effectiveness of a parallel algorithm is
to understand the smallest problem size at which it achieves peak
performance. To this end, we studied the performance of the PAN-
DORA algorithm with respect to the size of the dataset. We randomly
sampled a large dataset to maintain a given distribution, as the algo-
rithm could potentially be sensitive to the distribution of the data.
The results of sampling three datasets (Hacc497M, Normal300M2,
and Uniform300M3) on AMD MI250X are shown in Figure 12. For
reference, we also show the performance of the UN1oONFIND-MT
implementation on AMD EPYC 7A53. For the UNIONFIND-MT im-
plementation, performance immediately reaches its peak and slowly
decreases afterward. On the other hand, the performance of the new
algorithm increases with the number of samples until it reaches
saturation and stays constant afterward. At around 30,000 samples,
the performance of PANDORA-GPU exceeds that of UNTONFIND-MT.
We can observe that GPU saturation occurs around the 10° mark,
which is typical for GPU algorithms.

5.4 HDBSCAN* Performance

HbpBscan* Parameters selection: The only parameter relevant
to our evaluation is myp;s, which is the number of points to com-
pute the core-distance. Different values of mys produce different
dendrograms and affect the time spent on MST and dendrogram
construction. We use the default m;s = 2 in all our experiments ex-
cept for Figure 13 where we evaluate the performance of HpBscan™
for different values of mys. The performance gains of PANDORA
over UNIONFIND-MT increases with Mpts, therefore, for a fair com-
parison we use mp¢s = 2 in other experiments.

We evaluated the impact of PANDORA algorithm on HDBSCAN
computation on AMD EPYC 7A53 and AMD MI250X. We used a mul-
tithreaded HpBscAN™ implementation MEMOGFK [43] as baseline.

Additionally, we used GPU MST computation from ArborX [36]
along with PANDORA for computing dendrogram for GPU implemen-
tation of HpDBscAN™. We based our results on two datasets: Hacc37M
and Uniform100M3D, primarily focusing on the my;s value, the sole
parameter affecting these phases.

We show the results in Figure 13. Overall combination of ArborX
with PANDORA on AMD MI250X is 8-12X% faster than multithreaded
MEMOGFK. And dendrogram computation with PANDORA on AMD
MI250X is 17-33% faster than UNTIONFIND-MT in MEMOGFK. We also
observe that PANDORA uses less than a third of the total HpBscan™
time, while UNIONFIND-MT can account for more than half.

With increasing my;s times for dendrogram computation for
both datasets. Going from mp;s = 2 to mpss = 16, dendrogram
computation time in PANDORA increased by 1.1-1.5X. In contrast,
for UN1oNFIND-MT, the this time increased by a factor of 1.6-2.4%

We also observe that the speed-up of dendrogram computation
increases with mpts. However, as mp;s rises, the EMST computa-
tion demands more resources. Thus, the benefits of quicker dendro-
gram computation may be counterbalanced by the more demanding
EMST computation.
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